首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Brain stimulation》2022,15(1):78-86
BackgroundBrain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation.HypothesisWe hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory.MethodsWe implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object.ResultsAt 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons.ConclusionBy linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.  相似文献   

2.
《Brain stimulation》2022,15(5):1269-1278
BackgroundDeep brain stimulation of the internal globus pallidus (GPi DBS) is an invasive therapeutic modality intended to retune abnormal central nervous system patterns and relieve the patient of dystonic or other motor symptoms.ObjectivesThe aim of the presented research was to determine the neuroanatomical signature of GPi DBS modulation and its association with the clinical outcome.MethodsThis open-label fixed-order study with cross-sectional validation against healthy controls analysed the resting-state functional MRI activity changes induced by GPi DBS in 18 dystonia patients of heterogeneous aetiology, focusing on both global (full brain) and local connectivity (local signal homogeneity).ResultsCompared to the switched-off state, the activation of GPi DBS led to the restoration of global subcortical connectivity patterns (in both putamina, diencephalon and brainstem) towards those of healthy controls, with positive direct correlation over large-scale cortico-basal ganglia-thalamo-cortical and cerebellar networks with the clinical improvement. Nonetheless, on average, GPi DBS also seemed to bring local connectivity both in the cortical and subcortical regions farther away from the state detected in healthy controls. Interestingly, its correlation with clinical outcome showed that in better DBS responders, local connectivity defied this effect and approached healthy controls.ConclusionsAll in all, the extent of restoration of both these main metrics of interest towards the levels found in healthy controls clearly correlated with the clinical improvement, indicating that the restoration of network state towards more physiological condition may be a precondition for successful GPi DBS outcome in dystonia.  相似文献   

3.
《Clinical neurophysiology》2019,130(2):251-258
ObjectiveAim of the study was to explore the inter-ictal, resting-state EEG network in patients with focal epilepsy (FE) and to specify clinical factors that influence network activity.MethodsFunctional EEG connectivity (EEGfC) differences were computed between 232 FE patients (FE group) and 77 healthy controls. EEGfC was computed among 23 cortical regions within each hemisphere, for 25 very narrow bands from 1 to 25 Hz. We computed independent effects for six clinical factors on EEGfC in the FE group, by ANOVA and post-hoc t-statistics, corrected for multiple comparisons by false discovery rate method.ResultsRobust, statistically significant EEGfC differences emerged between the FE and the healthy control groups. Etiology, seizure type, duration of the illness and antiepileptic treatment were independent factors that influenced EEGfC. Statistically significant results occurred selectively in one or a few very narrow bands and outlined networks. Most abnormal EEGfC findings occurred at frequencies that mediate integrative and motor activities.ConclusionsFE patients have abnormal resting-state EEGfC network activity. Clinical factors significantly modify EEGfC.SignificanceDelineation of the FE network and modifying factors can open the way for targeted investigations and introduction of EEGfC into epilepsy research and practice.  相似文献   

4.
《Clinical neurophysiology》2021,132(10):2702-2710
ObjectiveHigh-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to reduce neuropathic pain, but intermittent “theta-burst” stimulation (iTBS) could be a better alternative because of shorter duration and greater ability to induce cortical plasticity. Here we compared head-to-head the pain-relieving efficacy of the two modalities when applied daily for 5 days to patients with neuropathic pain.MethodsForty-six patients received 20 Hz-rTMS and/or iTBS protocols and 39 of them underwent the full two procedures in a random cross-over design. They rated pain intensity, sleep quality, fatigue and general health status daily during 5 consecutive weeks.ResultsPain relief during the month following stimulation was superior after 20 Hz-rTMS relative to iTBS (F(1,38) = 4.645; p = 0.037). Correlation between respective levels of maximal relief showed a significant deviation toward the 20 Hz-rTMS effect. A greater proportion of individuals responded to 20 Hz-rTMS (52% vs 32%, 95 %CI[0.095–3.27]; p = 0.06), and reports of fatigue significantly improved after 20 Hz-rTMS relative to iTBS (p = 0.01). General health and sleep quality scores did not differentiate both techniques.ConclusionsHigh-frequency rTMS appeared superior to iTBS for neuropathic pain relief.SignificanceAdequate matching between the oscillatory activity of motor cortex and that of rTMS may increase synaptic efficacy, thus enhancing functional connectivity of motor cortex with distant structures involved in pain regulation.  相似文献   

5.
《Clinical neurophysiology》2021,132(10):2519-2531
ObjectiveTo test the hypothesis that intermittent theta burst stimulation (iTBS) variability depends on the ability to engage specific neurons in the primary motor cortex (M1).MethodsIn a sham-controlled interventional study on 31 healthy volunteers, we used concomitant transcranial magnetic stimulation (TMS) and electroencephalography (EEG). We compared baseline motor evoked potentials (MEPs), M1 iTBS-evoked EEG oscillations, and resting-state EEG (rsEEG) between subjects who did and did not show MEP facilitation following iTBS. We also investigated whether baseline MEP and iTBS-evoked EEG oscillations could explain inter and intraindividual variability in iTBS aftereffects.ResultsThe facilitation group had smaller baseline MEPs than the no-facilitation group and showed more iTBS-evoked EEG oscillation synchronization in the alpha and beta frequency bands. Resting-state EEG power was similar between groups and iTBS had a similar non-significant effect on rsEEG in both groups. Baseline MEP amplitude and beta iTBS-evoked EEG oscillation power explained both inter and intraindividual variability in MEP modulation following iTBS.ConclusionsThe results show that variability in iTBS-associated plasticity depends on baseline corticospinal excitability and on the ability of iTBS to engage M1 beta oscillations.SignificanceThese observations can be used to optimize iTBS investigational and therapeutic applications.  相似文献   

6.
《Brain stimulation》2023,16(2):507-514
BackgroundStudies have shown that vagus nerve-mediated inflammatory reflex could inhibit cytokine production and inflammation in sepsis animals.ObjectivesThis study aimed to explore the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) on inflammation and disease severity of sepsis patients.MethodsA randomized, double-blind, sham-controlled pilot study was performed. Twenty sepsis patients were randomly assigned to receive taVNS or sham stimulation for five consecutive days. Stimulation effect was assessed with serum cytokine levels, Acute Physiology and Chronic Health Evaluation (APACHE) Ⅱ score, and Sequential Organ Failure Assessment (SOFA) score at baseline and on Day 3, Day 5, and Day 7.ResultsTaVNS was well tolerated in the study population. Patients receiving taVNS experienced significant reductions in serum TNF-α and IL-1β levels and increases in IL-4 and IL-10 levels. SOFA scores decreased on Day 5 and Day 7 compared with baseline in the taVNS group. However, no changes were found in sham stimulation group. The changes of cytokine from Day 7 to Day 1 were greater with taVNS than sham stimulation. No differences in the APACHE Ⅱ score and SOFA score were observed between the two groups.ConclusionsTaVNS resulted in significantly lower serum pro-inflammatory cytokines and higher serum anti-inflammatory cytokines in sepsis patients.  相似文献   

7.
《Brain stimulation》2021,14(2):423-434
BackgroundThe dorsal premotor cortex (PMd) is a key region in bimanual coordination. However, causal evidence linking PMd functionality during motor planning and execution to movement quality is lacking.ObjectiveWe investigated how left (PMdL) and right PMd (PMdR) are causally involved in planning and executing bimanual movements, using short-train repetitive transcranial magnetic stimulation (rTMS). Additionally, we explored to what extent the observed rTMS-induced modulation of performance could be explained by rTMS-induced modulation of PMd-M1 interhemispheric interactions (IHI).MethodsTwenty healthy adults (mean age ± SD = 22.85 ± 3.73 years) participated in two sessions, in which either PMdL or PMdR was targeted with rTMS (10 Hz) in a pseudo-randomized design. PMd functionality was transiently modulated during the planning or execution of a complex bimanual task, whereby the participant was asked to track a moving dot by controlling two dials. The effect of rTMS on several performance measures was investigated. Concurrently, rTMS-induced modulation of PMd-M1 IHI was measured using a dual-coil paradigm, and associated with the rTMS-induced performance modulation.ResultsrTMS over PMdL during planning increased bilateral hand movement speed (p = 0.03), thereby improving movement accuracy (p = 0.02). In contrast, rTMS over PMdR during both planning and execution induced deterioration of movement stability (p = 0.04). rTMS-induced modulation of PMd-M1 IHI during planning did not predict rTMS-induced performance modulation.ConclusionThe current findings support the growing evidence on PMdL dominance during motor planning, as PMdL was crucially involved in planning the speed of each hand, subserving bimanual coordination accuracy. Moreover, the current results suggest that PMdR fulfills a role in continuous adjustment processes of movement.  相似文献   

8.
《Brain stimulation》2022,15(2):326-336
BackgroundIt has been suggested that sequential bilateral (SBL) TMS, combining high frequency, left dorsolateral prefrontal cortex (DLPFC) stimulation and low frequency, right DLPFC stimulation, is more effective than unilateral TMS.ObjectiveTo contrast treatment outcomes of left unilateral (LUL) and SBL protocols.MethodsRegistry data were collected at 111 practice sites. Of 10,099 patients, 3,871 comprised a modified intent-to-treat (mITT) sample, defined as a primary MDD diagnosis, age ≥18, and PHQ-9 completion before TMS and at least one PHQ-9 assessment after baseline. The mITT sample received high frequency (10 Hz) LUL TMS exclusively (N = 3,327) or SBL TMS in at least 90% of sessions (N = 544). Completers (N = 3,049) were responders or had received ≥20 sessions and had an end of acute treatment PHQ-9 assessment. To control for site effects, a Matched sample (N = 653) included Completers at sites that used both protocols. To control for selection bias, the SBL group was also compared to a Restricted LUL group, drawn from sites where no patient switched to SBL after substantial exposure to LUL TMS. Secondary analyses were conducted on CGI-S ratings.ResultsThe LUL group had superior outcomes compared to the SBL group for multiple PHQ-9 and CGI-S continuous and categorical measures in the mITT, Completer and Matched samples, including in the specified primary analyses. However, outcome differences were not observed when comparing the Restricted LUL and SBL groups. Within SBL protocols, the LUL-RUL order had superior outcomes compared to the RUL-LUL order in all CGI-S, but not PHQ-9, measures.ConclusionsWhile limited by the naturalistic design, there was no evidence that SBL TMS was superior to LUL TMS. The sequential order of RUL TMS followed by LUL TMS may have reduced efficacy compared to LUL TMS followed by RUL TMS.  相似文献   

9.
《Brain stimulation》2020,13(5):1232-1244
BackgroundBrain activity is constrained by and evolves over a network of structural and functional connections. Corticocortical evoked potentials (CCEPs) have been used to measure this connectivity and to discern brain areas involved in both brain function and disease. However, how varying stimulation parameters influences the measured CCEP across brain areas has not been well characterized.ObjectiveTo better understand the factors that influence the amplitude of the CCEPs as well as evoked gamma-band power (70–150 Hz) resulting from single-pulse stimulation via cortical surface and depth electrodes.MethodsCCEPs from 4370 stimulation-response channel pairs were recorded across a range of stimulation parameters and brain regions in 11 patients undergoing long-term monitoring for epilepsy. A generalized mixed-effects model was used to model cortical response amplitudes from 5 to 100 ms post-stimulation.ResultsStimulation levels <5.5 mA generated variable CCEPs with low amplitude and reduced spatial spread. Stimulation at ≥5.5 mA yielded a reliable and maximal CCEP across stimulation-response pairs over all regions. These findings were similar when examining the evoked gamma-band power. The amplitude of both measures was inversely correlated with distance. CCEPs and evoked gamma power were largest when measured in the hippocampus compared with other areas. Larger CCEP size and evoked gamma power were measured within the seizure onset zone compared with outside this zone.ConclusionThese results will help guide future stimulation protocols directed at quantifying network connectivity across cognitive and disease states.  相似文献   

10.
《Clinical neurophysiology》2019,130(8):1271-1279
ObjectiveTo compare the effects of active assisted wrist extension training, using a robotic exoskeleton (RW), with simultaneous 5 Hz (rTMS + RW) or Sham rTMS (Sham rTMS + RW) over the ipsilesional extensor carpi radialis motor cortical representation, on voluntary wrist muscle activation following stroke.MethodsThe two training conditions were completed at least one week apart in 13 participants >1-year post-stroke. Voluntary wrist extensor muscle activation (motor unit (MU) recruitment thresholds and firing rate modulation in a ramp-hold handgrip task), ipsilesional corticospinal excitability (motor evoked potential [MEP] amplitude) and transcallosal inhibition were measured Pre- and Post-training.ResultsFor MUs active both Pre and Post training, greater reductions in recruitment thresholds were found Post rTMS + RW training (p = 0.0001) compared to Sham rTMS + RW (p = 0.16). MU firing rate modulation increased following both training conditions (p = 0.001). Ipsilesional MEPs were elicited Pre and Post in only 5/13 participants. No significant changes were seen in ipsilesional corticospinal excitability and transcallosal inhibition measures (p > 0.05).ConclusionsFollowing a single rTMS + RW session in people >1-year post-stroke, changes were found in voluntary muscle activation of wrist extensor muscles. Alterations in ipsilesional corticospinal or interhemispheric excitability were not detected.SignificanceThe effects of rTMS + RW on muscle activation warrant further investigation as post-stroke rehabilitation strategy.  相似文献   

11.
《Brain stimulation》2022,15(2):337-351
BackgroundAbnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI.MethodsSixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10–10), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity.ResultsCompared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43 mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = ?0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between stimulation sites.ConclusionThis study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.  相似文献   

12.
《Clinical neurophysiology》2020,131(11):2657-2666
ObjectiveThe goal of this study was to investigate the spatial extent and functional organization of the epileptogenic network through cortico-cortical evoked potentials (CCEPs) in patients being evaluated with intracranial stereoelectroencephalography.MethodsWe retrospectively included 25 patients. We divided the recorded sites into three regions: epileptogenic zone (EZ); propagation zone (PZ); and noninvolved zone (NIZ). The root mean square of the amplitudes was calculated to reconstruct effective connectivity network. We also analyzed the N1/N2 amplitudes to explore the responsiveness influenced by epileptogenicity. Prognostic analysis was performed by comparing intra-region and inter-region connectivity between seizure-free and non-seizure-free groups.ResultsOur results confirmed that stimulation of the EZ caused the strongest responses on other sites within and outside the EZ. Moreover, we found a hierarchical connectivity pattern showing the highest connectivity strength within EZ, and decreasing connectivity gradient from EZ, PZ to NIZ. Prognostic analysis indicated a stronger intra-EZ connection in the seizure-free group.ConclusionThe EZ showed highest excitability and dominantly influenced other regions. Quantitative CCEPs can be useful in mapping epileptic networks and predicting surgical outcome.SignificanceThe generated computational connectivity model may enhance our understanding of epileptogenic networks and provide useful information for surgical planning and prognosis prediction.  相似文献   

13.
《Brain stimulation》2019,12(5):1197-1204
BackgroundTranscranial direct current stimulation (tDCS) is a promising intervention for major depression. However, its clinical effects are heterogeneous. We investigated, in a subsample of the randomized, clinical trial Escitalopram versus Electrical Direct Current Therapy for Depression Study (ELECT-TDCS), whether the volumes of left and right prefrontal cortex (PFC) and anterior cingulate cortex (ACC) were associated with prefrontal tDCS response.MethodsBaseline structural T1 weighted MRI data were analyzed from 52 patients (15 males). Patients were randomized to the following conditions: escitalopram 20 mg/day, bifrontal tDCS (2 mA, 30min, 22 sessions), or placebo. Antidepressant outcomes were assessed over a treatment period of 10 weeks. Voxel-based gray matter volumes of PFC and ACC were determined using state-of-the-art parcellation approaches.ResultsAccording to our a priori hypothesis, in the left dorsal PFC, larger gray matter volumes were associated with depression improvement in the tDCS group (n = 15) compared to sham (n = 21) (Cohen's d = 0.3, 95% confidence interval [0.01; 0.6], p = 0.04). Neither right PFC nor ACC volumes were associated with depression improvement. Exploratory analyses of distinct PFC subregions were performed, but no area was associated with tDCS response after correction for multiple comparisons.ConclusionLeft PFC baseline gray matter volume was associated with tDCS antidepressant effects. This brain region and its subdivisions should be investigated further as a potential neurobiological predictor for prefrontal tDCS treatment in depression and might be correlated with tDCS antidepressant mechanisms of action.  相似文献   

14.
《Clinical neurophysiology》2021,132(9):2191-2198
ObjectiveTo explore whether abnormal thalamic resting-state functional connectivity (rsFC) contributes to altered sensorimotor integration and hand dexterity impairment in multiple sclerosis (MS).MethodsTo evaluate sensorimotor integration, we recorded kinematic features of index finger abductions during somatosensory temporal discrimination threshold (STDT) testing in 36 patients with relapsing-remitting MS and 39 healthy controls (HC). Participants underwent a multimodal 3T structural and functional MRI protocol.ResultsPatients had lower index finger abduction velocity during STDT testing compared to HC. Thalamic rsFC with the precentral and postcentral gyri, supplementary motor area (SMA), insula, and basal ganglia was higher in patients than HC. Intrathalamic rsFC and thalamic rsFC with caudate and insula bilaterally was lower in patients than HC. Finger movement velocity positively correlated with intrathalamic rsFC and negatively correlated with thalamic rsFC with the precentral and postcentral gyri, SMA, and putamen.ConclusionsAbnormal thalamic rsFC is a possible substrate for altered sensorimotor integration in MS, with high intrathalamic rsFC facilitating finger movements and increased thalamic rsFC with the basal ganglia and sensorimotor cortex contributing to motor performance deterioration.SignificanceThe combined study of thalamic functional connectivity and upper limb sensorimotor integration may be useful in identifying patients who can benefit from early rehabilitation to prevent upper limb motor impairment.  相似文献   

15.
《Brain stimulation》2021,14(4):807-821
BackgroundDeep brain stimulation is an established therapy for several neurological disorders; however, its effects on neuronal activity vary across brain regions and depend on stimulation settings. Understanding these variable responses can aid in the development of physiologically-informed stimulation paradigms in existing or prospective indications.ObjectiveProvide experimental and computational insights into the brain-region-specific and frequency-dependent effects of extracellular stimulation on neuronal activity.MethodsIn patients with movement disorders, single-neuron recordings were acquired from the subthalamic nucleus, substantia nigra pars reticulata, ventral intermediate nucleus, or reticular thalamus during microstimulation across various frequencies (1–100 Hz) to assess single-pulse and frequency-response functions. Moreover, a biophysically-realistic computational framework was developed which generated postsynaptic responses under the assumption that electrical stimuli simultaneously activated all convergent presynaptic inputs to stimulation target neurons. The framework took into consideration the relative distributions of excitatory/inhibitory afferent inputs to model site-specific responses, which were in turn embedded within a model of short-term synaptic plasticity to account for stimulation frequency-dependence.ResultsWe demonstrated microstimulation-evoked excitatory neuronal responses in thalamic structures (which have predominantly excitatory inputs) and inhibitory responses in basal ganglia structures (predominantly inhibitory inputs); however, higher stimulation frequencies led to a loss of site-specificity and convergence towards neuronal suppression. The model confirmed that site-specific responses could be simulated by accounting for local neuroanatomical/microcircuit properties, while suppression of neuronal activity during high-frequency stimulation was mediated by short-term synaptic depression.ConclusionsBrain-region-specific and frequency-dependant neuronal responses could be simulated by considering neuroanatomical (local microcircuitry) and neurophysiological (short-term plasticity) properties.  相似文献   

16.
《Brain stimulation》2020,13(6):1784-1792
BackgroundDeep brain stimulation (DBS) holds great promise in treating various brain diseases but its chronic therapeutic mechanisms are unclear.ObjectiveTo explore the immediate and chronic effects of DBS on brain oscillations, and understand how different sub-bands of oscillations may be related to symptom improvement in Parkinson's patients.MethodsWe carried out a longitudinal study to examine the effects of DBS on local field potentials recorded by sensing-enabled neurostimulators in the subthalamic nuclei of Parkinson's patients, using a novel block-design stimulation paradigm.ResultsDBS significantly suppressed beta activity (13–35Hz) but the suppression effect appeared to gradually attenuate during a 6-month follow-up period after surgery (p = 0.002). However, beta suppression did not attenuate after repeated stimulation over several minutes (p > 0.110), suggesting that the changes in beta suppression may reflect a slow reconfiguration of neural pathways instead of habituation. Suppression of beta was also associated with clinical symptom improvement across subjects. Importantly, symptom-relevant features fell within the high beta band at month 1 but shifted to the low beta band at month 6, indicating that the high beta and the low beta oscillations may play different functional roles and respond differently to stimulation over the long-term treatment.ConclusionThese data may advance understanding of chronic DBS effects on beta oscillations and their association with clinical improvement, offering novel insights to the therapeutic mechanisms of DBS.  相似文献   

17.
《Clinical neurophysiology》2021,132(1):126-136
ObjectivesLittle evidence is available on the role of transcranial direct current stimulation (tDCS) in patients affected by chronic migraine (CM) and medication overuse headache (MOH). We aim to investigate the effects of tDCS in patients with CM and MOH as well as its role on brain activity.MethodsTwenty patients with CM and MOH were hospitalized for a 7-day detoxification treatment. Upon admission, patients were randomly assigned to anodal tDCS or sham stimulation delivered over the primary motor cortex contralateral to the prevalent migraine pain side every day for 5 days. Clinical data were recorded at baseline (T0), after 1 month (T2) and 6 months (T3). EEG recording was performed at T0, at the end of the tDCS/Sham treatment, and at T2.ResultsAt T2 and T3, we found a significant reduction in monthly migraine days (p = 0.001), which were more pronounced in the tDCS group when compared to the sham group (p = 0.016).At T2, we found a significant increase of alpha rhythm in occipital leads, which was significantly higher in tDCS group when compared to sham group.ConclusionstDCS showed adjuvant effects to detoxification in the management of patients with CM and MOH. The EEG recording showed a significant potentiation of alpha rhythm, which may represent a correlate of the underlying changes in cortico-thalamic connections.SignificanceThis study suggests a possible role for tDCS in the treatment of CM and MOH. The observed clinical improvement is coupled with a potentiation of EEG alpha rhythm.  相似文献   

18.
《Brain stimulation》2022,15(1):46-52
BackgroundSimultaneously modulating individual neural oscillation and cortical excitability may be important for enhancing communication between the primary motor cortex and spinal motor neurons, which plays a key role in motor control. However, it is unknown whether individualized beta-band oscillatory transcranial direct current stimulation (otDCS) enhances corticospinal oscillation and excitability.ObjectiveThis study investigated the effects of individualized beta-band otDCS on corticomuscular coherence (CMC) and corticospinal excitability in healthy individuals.MethodsIn total, 29 healthy volunteers participated in separate experiments. They received the following stimuli for 10 min on different days: 1) 2-mA otDCS with individualized beta-band frequencies, 2) 2-mA transcranial alternating current stimulation (tACS) with individualized beta-band frequencies, and 3) 2-mA transcranial direct current stimulation (tDCS). The changes in CMC between the vertex and tibialis anterior (TA) muscle and TA muscle motor-evoked potentials (MEPs) were assessed before and after (immediately, 10 min, and 20 min after) stimulation on different days. Additionally, 20-Hz otDCS for 10 min was applied to investigate the effects of a fixed beta-band frequency on CMC.ResultsotDCS significantly increased CMC and MEPs immediately after stimulation, whereas tACS and tDCS had no effects. There was a significant negative correlation between normalized CMC changes in response to 20-Hz otDCS and the numerical difference between the 20-Hz and individualized CMC peak frequency before the stimulation.ConclusionsThese findings suggest that simultaneous modulation of neural oscillation and cortical excitability is critical for enhancing corticospinal communication. Individualized otDCS holds potential as a useful method in the field of neurorehabilitation.  相似文献   

19.
《Brain stimulation》2020,13(2):310-317
BackgroundThe ability to manipulate the excitability of the network between the inferior parietal lobule (IPL) and primary motor cortex (M1) may have clinical value.ObjectiveTo investigate the possibility of inducing long-lasting changes in M1 excitability by applying quadripulse transcranial magnetic stimulation (QPS) to the IPL, and to ascertain stimulus condition- and site-dependent differences in the effects.MethodsQPS was applied to M1, the primary somatosensory cortex (S1), the supramarginal gyrus (SMG) and angular gyrus (AG) IPL areas, with the inter-stimulus interval (ISI) in the train of pulses set to either 5 ms (QPS-5) or 50 ms (QPS-50). QPS was repeated at 0.2 Hz for 30 min, or not presented (sham condition). Excitability changes in the target site were examined by means of single-pulse transcranial magnetic stimulation (TMS).ResultsQPS-5 and QPS-50 at M1 increased and decreased M1 excitability, respectively. QPS at S1 induced no obvious change in M1 excitability. However, QPS at the SMG induced mainly suppressive effects in M1 for at least 30 min, regardless of the ISI length. Both QPS ISIs at the AG yielded significantly different MEP compared to those at the SMG. Thus, the direction of the plastic effect of QPS differed depending on the site, even under the same stimulation conditions.ConclusionsQPS at the IPL produced long-lasting changes in M1 excitability, which differed depending on the precise stimulation site within the IPL. These results raise the possibility of noninvasive induction of functional plasticity in M1 via input from the IPL.  相似文献   

20.
ObjectiveExposure to childhood trauma (CT) is associated with cognitive impairment in schizophrenia, and deficits in social cognition in particular. Here, we sought to test whether IL-6 mediated the association between CT and social cognition both directly, and sequentially via altered default mode network (DMN) connectivity.MethodsThree-hundred-and-eleven participants (104 patients and 207 healthy participants) were included, with MRI data acquired in a subset of n = 147. CT was measured using the childhood trauma questionnaire (CTQ). IL-6 was measured in both plasma and in toll like receptor (TLR) stimulated whole blood. The CANTAB emotion recognition task (ERT) was administered to assess social cognition, and cortical connectivity was assessed based on resting DMN connectivity.ResultsHigher IL-6 levels, measured both in plasma and in toll-like receptor (TLR-2) stimulated blood, were significantly correlated with higher CTQ scores and lower cognitive and social cognitive function. Plasma IL-6 was further observed to partly mediate the association between higher CT scores and lower emotion recognition performance (CTQ total: βindirect −0.0234, 95% CI: −0.0573 to −0.0074; CTQ physical neglect: βindirect = −0.0316, 95% CI: −0.0741 to −0.0049). Finally, sequential mediation was observed between plasma IL-6 levels and DMN connectivity in mediating the effects of higher CTQ on lower social cognitive function (βindirect = −0.0618, 95% CI: −0.1523 to −0.285).ConclusionThis work suggests that previous associations between CT and social cognition may be partly mediated via an increased inflammatory response. IL-6′s association with changes in DMN activity further suggest at least one cortical network via which CT related effects on cognition may be transmitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号