首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
We investigated the estrogen agonist/antagonist properties of the selective estrogen receptor modulators (SERMs), tamoxifen (TMX) and 4-hydroxy-tamoxifen (OHT), using an in vitro neuron model system to determine the impact of the neuroprotective and neurotrophic properties of these SERMs. Low concentrations of TMX or OHT were without effect on a marker of neuronal viability, basal release of lactate dehydrogenase (LDH), whereas high concentrations of both SERMs (2500 ng/ml) induced a significant increase in LDH, indicating the potential toxicity of both SERMs at high concentrations. Subsequent experiments revealed that subtoxic concentrations of both TMX and OHT induced significant neuroprotection against beta-amyloid(25-35)-induced toxicity; 15-20% and 10-15% (P < 0.05), respectively and also against glutamate-induced toxicity; 25-30% and 20-40% (P < 0.05 and P < 0.01), respectively. Additional in vitro experiments included analysis of neuron survival to determine whether the SERM, OHT, acted competitively or synergistically with the endogenous estrogen, 17 beta-estradiol (E2). These revealed that neuron survival following exposure to the neurotoxins beta-amyloid and excitotoxic glutamate was significantly increased in cultures treated with OHT (50 ng/ml) (10%, P < 0.01) and that the magnitude of survival was equivalent to E2 (10 ng/ml). The combined presence of OHT and E2 significantly protected against both beta-amyloid(25-35) and excitotoxic glutamate-induced neuron death (10%, P < 0.01) but was not significantly different from either OHT or E2 alone. To assess neurotrophic effects of these same SERMs, cultured neurons from brain regions involved in memory function and Alzheimer's disease were evaluated by morphological analysis of individual neurons. Results of these analyses demonstrated that TMX treatment did not significantly increase the process outgrowth or morphological complexity of cortical, hippocampal, or basal forebrain neurons. Similar analyses showed that OHT also failed to significantly increase the neuronal outgrowth of either cortical or hippocampal neurons. Results of these studies predict that TMX and OHT could exert a neuroprotective function but would not promote estrogen-dependent memory function.  相似文献   

2.
Wen Y  Perez EJ  Green PS  Sarkar SN  Simpkins JW 《Neuroreport》2004,15(9):1515-1518
Estrogens exert neuroprotective activity in both in vivo and in vitro model systems. Herein, we report that both 17beta-estradiol and low concentrations of nitric oxide (NO) attenuate hydrogen peroxide (H2O2) induced toxicity in SK-N-SH cells, which express the neuronal nitric oxide synthase (nNOS). 17beta-estradiol rapidly induced an increase in NO levels. A nNOS inhibitor was able to block the neuroprotection of 17beta-estradiol. Cyclic guanylyl mono-phosphate (cGMP) also protected against H2O2 induced toxicity, while NO's protection was attenuated by ODQ, a soluble guanylyl cyclase (sGC) inhibitor. In SK-N-SH cells, the major estrogen receptor isoforms is estrogen receptor beta. Our current study suggests that increased activity of nNOS may be involved in the neuroprotection conferred by 17beta-estradiol.  相似文献   

3.
It has been shown that estrogen replacement in menopausal women is effective in slowing down the progression of cognitive impairment in Alzheimer's disease. Although recent studies have demonstrated the neuroprotective effects of estrogen, the precise mechanism of neuroprotection has not been elucidated. In the present study, we show that the phosphatidylinositol 3-kinase (PI3-K) cascade is involved in the neuroprotective mechanism stimulated by estrogen. Exposure to glutamate reduced the viability of rat primary cortical neurons. Pretreatment with 10 nM 17beta-estradiol significantly attenuated the glutamate-induced toxicity. This neuroprotective effect of 17beta-estradiol was blocked by co-administration with LY294002, a selective PI3-K inhibitor, but not by co-administration with PD98059, a selective mitogen activated protein kinase kinase inhibitor. Pretreatment with ICI182780, a specific estrogen receptor antagonist, also blocked the neuroprotection. Immunoblotting assay revealed that treatment with 17beta-estradiol induced the phosphorylation of Akt/PKB, an effector immediately downstream of PI3-K. These results suggest that PI3-K mediates the neuroprotective effect of 17beta-estradiol against glutamate-induced neurotoxicity.  相似文献   

4.
Estrogen has demonstrated neuroprotective properties, which may underlie the observed preventive effect of estrogen-based hormone therapy (HT) against the development of neurodegenerative disorders such as Alzheimer's disease. Deleterious side effects of HT have increased efforts to develop safer compounds that selectively reproduce beneficial estrogen actions. Recently, 4-estren-3 alpha,17 beta-diol (estren) was identified as having estrogen agonist properties in bone, without significantly stimulating growth of reproductive tissues. Here, we examined whether estren parallels the neuroprotective actions of estrogen against beta-amyloid (A beta) in cultured cerebrocortical neurons. Estren increased neuronal viability to a similar extent to that observed with 17 beta-estradiol (E2) and 17 alpha-estradiol. As we previously reported for E2, estren rapidly increased PKC activity, and PKC inhibition prevented estren neuroprotection. In contrast, the estrogen receptor antagonist ICI 182,780 blocked E2, but not estren neuroprotection. Our results indicate that estren-induced activation of rapid cell signaling pathways protects cultured neurons from A beta toxicity.  相似文献   

5.
Estrogen involvement in neuroprotection is now widely accepted, although the specific molecular and cellular mechanisms of estrogen action in neuroprotection remain unclear. This study examines estrogenic effects in a mixed population of cells in attempts to identify the contributing cells that result in estrogen-mediated neuroprotection. Utilizing primary mesencephalic neurons, we found expression of both estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) with a predominance of ERalpha on both dopamine neurons and astrocytes. We also found that 17beta-estradiol protects dopamine neurons from injury induced by the complex I inhibitor, 1-methyl-4-phenyl pyridinium (MPP(+)) in a time- and ER-dependent manner. At least 4 h of estrogen pre-treatment was required to elicit protection, an effect that was blocked by the ER antagonist, ICI 182,780. Moreover, ERalpha mediated the protection afforded by estrogen since only the ERalpha agonist, HPTE, but not the ERbeta agonist, DPN, protected against dopamine cell loss. Since glial cells were shown to express significant levels of ERalpha, we investigated a possible indirect mechanism of estrogen-mediated neuroprotection through glial cell interaction. Removal of glial cells from the cultures by application of the mitotic inhibitor, 5-fluoro-2'-deoxyuridine, significantly reduced the neuroprotective effects of estrogen. These data indicate that neuroprotection provided by estrogen against MPP(+) toxicity is mediated by ERalpha and involves an interplay among at least two cell types.  相似文献   

6.
Estrogens play an important role in neuronal function and in protecting neurones in the cerebral cortex against pathological conditions. An in vivo model of glutamate excitotoxicity in which glutamate is applied to the cortex of rats through a microdialysis probe has been used to investigate the neuroprotective processes initiated by 17beta-estradiol. Rats were pre-treated with 17beta-estradiol (i.v.) before local application of 100 mM glutamate into the cortex through a microdialysis probe. Pre-treatment with 17beta-estradiol significantly reduced the size of the glutamate-induced cortical lesion. In the cortical microdialysates collected from the probe, a peak of lactate was observed immediately after glutamate application. After 17beta-estradiol pre-treatment this peak of lactate was significantly higher with estradiol than without 120 min after glutamate application, reaching 700% basal level at the end of measurement. The level of extracellular glucose was markedly decreased with and without 17beta-estradiol pre-treatment. Local blockage of neuronal lactate transporters with alpha-cyano-4-hydroxycinnamate (4-CIN) completely abolished the neuroprotective effect of 17beta-estradiol and induced a larger cortical lesion. An accumulation of extracellular lactate was observed after inhibition of the lactate transporters suggesting that transport of lactate into neurones is necessary for the neuroprotective effect of 17beta-estradiol. The anti-estrogen tamoxifen also abolished the neuroprotective effect of 17beta-estradiol on the lesion size and inhibited the production of lactate. These results suggest a new neuroprotective mechanism of 17beta-estradiol by activating glutamate-stimulated lactate production, which is estrogen receptor-dependent.  相似文献   

7.
Preconditioning of sublethal ischemia exhibits neuroprotection against subsequent ischemia-induced neuronal death. It has been indicated that glutamate, an excitatory amino acid, is involved in the pathogenesis of ischemia-induced neuronal death or neurodegeneration. To elucidate whether prestimulation of glutamate receptor could counter ischemia-induced neuronal death or neurodegeneration, we examined the effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), an ionotropic subtype of glutamate receptor, on excess glutamate-induced excitotoxicity using primary cortical neuronal cultures. We found that AMPA exerted a neuroprotective effect in a time- and concentration-dependent manner. A blocker of phosphatidylinositol-3 kinase (PI3K), LY294002 (10 microM), significantly attenuated AMPA-induced protection. In addition, Ser473 of Akt/PKB, a downstream target of PI3K, was phosphorylated by AMPA administration (10 microM). Glycogen synthase kinase 3beta (GSK3beta), which has been reported to be inactivated by Akt, was phosphorylated at Ser9 by AMPA. Ser9-phosphorylated GSK3beta or inactivated form would be a key molecule for neuroprotection, insofar as lithium chloride (100 microM) and SB216763 (10 microM), inhibitors of GSK3beta, also induced phosphorylation of GSK3beta at Ser9 and exerted neuroprotection, respectively. Glutamate (100 microM) increased cleaved caspase-3, an apoptosis-related cysteine protease, and caspase-3 inhibitor (Ac-DEVD-CHO; 1 microM) blocked glutamate-induced excitotoxicity in our culture. AMPA (10 microM, 24 hr) and SB216763 (10 microM) prominently decreased glutamate-induced caspase-3 cleavage. These findings suggest that AMPA activates PI3K-Akt and subsequently inhibits GSK3beta and that inactivated GSK3beta attenuates glutamate-induced caspase-3 cleavage and neurotoxicity.  相似文献   

8.
9.
T Hosoda  H Nakajima  H Honjo 《Neuroreport》2001,12(9):1965-1970
Accumulating studies have shown that estrogen replacement therapy reduces the risk of Alzheimer's disease. In this study, we clarified that 17beta-estradiol (E2) significantly rescues PC12 neuronal cells from amyloid beta protein (Abeta)-induced cell death. We found that the amino acid residues of 25 to 35 (Abeta25-35) were more cytotoxic than the full length protein (Abeta1-40) and these residues induced DNA fragmentation typical for apopto- sis. In addition, E2 was confirmed to inhibit calcium influx and cytochrome c release induced by Abeta25-35. Since these sequential events cause apoptosis, the protective effect of E2 may be exerted not by the direct interaction with Abeta, but by the blockade of the mitochondrial apoptotic pathway induced by Abeta.  相似文献   

10.
A low estrogen status in postmenopausal women is associated with elevated plasma levels of plasminogen activator inhibitor-1 (PAI-1). In this study, the ability of estrogen compounds to regulate PAI-1 expression was determined in a hepatocyte HepG2 cell line made to stably express estrogen receptor alpha (ERalpha). In both the wild type and ER expressing HepG2 cells, estrogen had no effect on basal PAI-1 expression. However, in the ER expressing cells the ability of IL-1beta to increase PAI-1 mRNA and protein levels was attenuated by 17beta-estradiol, tamoxifen and twelve estrogen components of Premarin. In contrast, the mixed agonist/antagonist raloxifene had weak agonist activity and like the pure antagonist ICI 182780, it dose dependently blocked the effect of 17beta-estradiol on IL-1beta stimulated PAI-1 levels. These results suggest that estrogen agonists may lower PAI-1 levels in vivo by inhibiting cytokine activated PAI-1 expression by an ER dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号