首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The medial preoptic area (MPOA), bed nucleus of the stria terminalis (BNST), and medial amygdaloid nucleus (Me) are essential for male sexual behavior in the Syrian hamster. These nuclei received chemosensory stimuli and gonadal steroid signals, both of which are required for mating behavior. The objective of this study was to compare the distribution of androgen- and estrogen-concentrating neurons in MPOA, BNST, and Me in the adult male hamster using steroid autoradiography for estradiol (E2), testosterone (T) and dihydrotestosterone (DHT). Adult males (n = 4 per group) received two i.p. injections of tritiated steroid 4-7 days after castration. Six-microns frozen sections through the brain were mounted onto emulsion-coated slides, and exposed for 11-16 months. In MPOA, BNST, and Me, neurons were more abundant and heavily labelled after [3H]E2 treatment than after either [3H]T or [3H]DHT. Tritiated estradiol- and DHT-labeled cells were found throughout the rostrocaudal extent of Me, with a high concentration in posterodorsal Me. Tritiated testosterone treatment labelled cells largely within posterodorsal Me. In MPOA, the majority of E2-, T-, and DHT-labelled neurons were in the medial preoptic nucleus (MPN) and the preoptic continuation of the posteromedial bed nucleus of the stria terminalis (BNSTpm). Few T-labelled cells were present outside these subdivisions. In the BNST, E2- and DHT-labelled neurons were present in all subdivisions, whereas T labelling was confined to the antero- and posteromedial subdivisions of BNST. These results suggest that the distribution of androgen- and estrogen receptor-containing neurons overlap considerably in nuclei which transmit chemosensory signals in the control of mating behavior.  相似文献   

2.
Opiate receptor labeling was examined throughout the early postnatal period using autoradiography to localize and quantify [3H]naloxone binding to μ-type opiate receptors in the medial preoptic area (MPOA). This region begins to exhibit sexual dimorphism of volume and dendritic growth shortly after birth. A distinct concentration of opiate receptor labeling appears on postnatal day 3 in females: this labeling is directly associated with the sexually dimorphic nucleus of the preoptic area (SDN-POA). SDN-POA labeling becomes denser through postnatal day 10 in females and the densely labeled area increases in size to encompass and surround the SDN-POA. These changes in opiate receptor labeling occur only in females, since males show relatively uniform labeling across the region throughout the early postnatal period.The critical time of formation of dense MPOA opiate receptor labeling may be related to endogenous MPOA opioid function and to the critical period of dendritic growth of SDN-POA neurons. The timing of these critical periods and their focus in the SDN-POA are coincident. The possible role of MPOA opiate receptors in modulating growth of MPOA neurons is discussed.  相似文献   

3.
The sexually dimorphic nucleus of the preoptic area (SDN-POA) of Sprague-Dawley rats is larger in volume in the male and hormone-dependent early in postnatal life. In the present study, we compared for each sex the time course of neuroblast proliferation which forms SDN-POA or adjacent medial preoptic area (MPOA) neurons. Additionally, we investigated whether there is a temporal gradient of production of neurons in relation to their final position within the SDN-POA. On day 14, 15, 16, 17, or 18 postfertilization (pf) pregnant rats were given a single injection of 3H-thymidine (*thy). At 30 postnatal days of age the pups were sacrificed and brain sections were prepared and processed for autoradiography. Three sections of the SDN-POA and an adjacent area just lateral to it in the MPOA wer also analyzed. In the MPOA and the SDN-POA the percentage (%) of labeled neurons decreases as the day of injection of *thy approaches the end of gestation, but the time period in which neuroblast divisions occurred is markedly different for the SDN-POA as compared to that for the MPOA. DNA synthesis occurs as late as day 18pf for neurons which form the SDN-POA but ceases on day 16pf for those destined for the MPOA. There is a sex difference in neuronal production on both day 14 and 17pf for neurons destined for the SDN-POA. After injection on day 14pf the % labeled neurons is larger in the female than in the male but after injection on day 17pf this is reversed. There are also significant sex differences as well as a temporal gradient associated with the % labeled neurons in the SDN-POA in relation to their final anterior-posterior position. In addition, this study confirms our previous results which justify labeling the SDN-POA a nucleus, since neuronal density in this region in the male and female is significantly greater than that in the surrounding MPOA. These data illustrate that the specific neurons which comprise the SDN-POA in both the male and female are being produced as late as day 18pf, whereas neurons located in the MPOA but not in the SDN-POA have all been born by day 16pf. Neuroblast division which produces the neurons of the SDN-POA may begin earlier and terminate sooner in the female than in the male. These differences in neuronal production may partially account for the sexual dimorphism seen in the volume and neuronal number of the SDN-POA of the adult rat.  相似文献   

4.
The sexually dimorphic nucleus of the preoptic area (SDN-POA) is larger in male than in female rats, the male phenotype requiring the presence of circulating androgens perinatally. These experiments investigated the intracellular electrophysiology and morphology of SDN-POA neurons and compared these properties with those of other medial preoptic area (MPOA) neurons. Biocytin-injected cells in the SDN-POA either had one or two primary dendrites, or they had multipolar dendritic arrays; dendrites were aspiny or sparsely spiny and displayed limited branching. Neurons in other parts of the MPOA were similar morphologically. Regardless of morphology, neurons situated in either the SDN-POA or surrounding MPOA had low-threshold potentials and linear or nearly linear current-voltage relations. In most (73%) cells, stimulation of the dorsal preoptic region evoked a fast excitatory postsynaptic potential followed by a fast inhibitory postsynaptic potential (IPSP). Bicuculline blocked the fast IPSPs, which reversed near the Cl2 equilibrium potential (-71 ± 5mV), indicating their mediation by gamma-aminobutyric acid (GABA)A receptors. Neurons in the SDN-POA have electrophysiological properties similar to those of other medial preoptic cells. When compared with the hypothalamic paraventricular nucleus, the MPOA appears relatively homogeneous electrophysiologically. This is despite the morphological variability within this population of neurons and heterogeneities that are also apparent at other levels of analysis. Finally, GABA-mediated, inhibitory synaptic contacts are widespread among medial preoptic neurons, consistent with indications from earlier reports that GABA provides a link in the feedback actions of gonadal steroids on the release of gonadotropic hormones. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Neurogenesis and morphogenesis in the rat preoptic area were examined with [3H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [3H]thymidine on two consecutive gestational days. Nine groups were exposed to [3H]thymidine on embryonic days E13-E14, E14-E15, E21-E22, respectively. On postnatal day P5, the percentage of labeled cells and the proportion of cells originating during 24-hr periods were quantified at four anteroposterior levels in the preoptic area. Throughout most of the preoptic area there is a lateral to medial neurogenetic gradient. Neurons originate between E12-E15 in the lateral preoptic area, between E13-E16 in the medial preoptic area, between E14-E17 in the medial preoptic nucleus, and between E15-E18 in the periventricular nucleus. These structures also have intrinsic dorsal to ventral neurogenetic gradients. There are two atypical structures: (1) the sexually dimorphic nucleus originates exceptionally late (E15-E19) and is located more lateral to the ventricle than older neurons; (2) in the median preoptic nucleus, where older neurons (E13-E14) are located closer to the third ventricle than younger neurons (E14-E17). For an autoradiographic study of morphogenesis, pregnant females were given a single injection of [3H]thymidine during gestation, and their embryos were removed either two hrs later (short survival) or in successive 24-hr periods (sequential survival). Short-survival autoradiography was used to locate the putative neuroepithelial sources of preoptic nuclei, and sequential survival autoradiography was used to trace the migratory waves of young neurons and their final settling locations. The preoptic neuroepithelium is located anterior to and in the front wall of the optic recess. The neuroepithelium lining the third ventricle is postulated to contain a mosaic of spatiotemporally defined neuroepithelial zones, each containing precursor cells for a specific structure. The neuroepithelial zones and the migratory waves originating from them are illustrated. Throughout most of the preoptic area, neurons migrate predominantly laterally. The older neurons in the lateral preoptic area migrate earlier and settle adjacent to the telencephalon. Younger neurons migrate in successively later waves and accumulate medially. The sexually dimorphic neurons are exceptional since they migrate past older cells to settle in the core of the medial preoptic nucleus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The sexually dimorphic nucleus of the preoptic area (SDN-POA) in the rat represents a morphological substrate in which the influence of gonadal hormones on the process of sexual differentiation of the brain can be seen. Since the medial preoptic area (MPO) is a region rich in catecholamine (CA) terminals, it is possible that catecholamines may play a role either in the differentiation of the perinatal SDN-POA or in the function of this nucleus in the adult. It is not known whether catecholamine terminals exist within the SDN-POA or whether they can directly influence the activity of SDN-POA neurons. The present study was conducted to determine the extent to which catecholamines innervate this nucleus and further to elucidate the possibility of a potential sexual dimorphism in the innervation pattern. In order to determine which of the neurons in the MPO are within the SDN-POA we have utilized the fact that the SDN-POA has a prolonged period of neurogenesis in comparison to other neurons of the MPO. Thus, tritiated thymidine-labeled neurons can be used as a detection criterion for the SDN-POA. To conduct this experiment, timed pregnant Sprague-Dawley females were given a single injection of [3H]thymidine on Day 18 of gestation. Pups were killed as adults and prepared for fluorescence histochemistry of monoamines. Sections adjacent to those examined for catecholamine fluorescence were treated for autoradiographic localization of [3H]thymidine. Fluorescence innervation patterns were plotted within the boundaries of the nucleus following its identification from Nissl sections as well as from adjacent autoradiograms simultaneously viewed in a comparator bridge microscope with dark-field illumination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The sexually dimorphic nucleus of the rat medial preoptic area (SDN-POA) has a volume five times larger in the adult male compared with that of the adult female. In the present study, the effects of discrete electrolytic destruction of the SDN-POA or other specific medial preoptic (MPOA) regions on masculine sexual behavior were determined in adult, sexually experienced male rats. Small lesions encompassing the SDN-POA had no effect on the maintenance of copulatory behavior. Lesions of similar size placed within the ventral or anterio-dorsal MPOA also did not consistently affect the display of masculine sexual behavior. However, animals that received small lesions within their dorsal MPOA showed a substantial, long-term decrease in number of mounts, intromissions, and ejaculations compared to these parameters in sham-lesioned control rats, thus indicating a lesion-induced disruption of those neural mechanisms mediating these behaviors. Collectively these data suggest that the SDN-POA is not critical for a full expression of male sexual behavior and that the dorsal MPOA may be more important than other MPOA regions for copulatory behavior.  相似文献   

8.
Ronald P. Hammer  Jr.   《Brain research》1985,360(1-2):65-74
The opiate receptor content of the sexually dimorphic medial preoptic area (MPOA) was examined in newborn and 5-day-old (D6) male and female rats. A significant increase of [3H]naloxone binding was observed in and around the sexually dimorphic nucleus of the preoptic area (SDN-POA) in D6 female rats, relative to newborn females. Opiate receptor labeling did not increase over this period in males, nor was labeling different between males and females at birth. This dramatic alteration of MPOA opiate receptor content was observed to occur in either sex in the absence of testosterone postnatally; that is, neonatally-castrated males exhibited the same increase of labeling by D6 as did normal females. Conversely, daily postnatal testosterone treatment of females from birth to D6 resulted in the development of male-like MPOA opiate receptor pattern. The sex hormone-dependence of MPOA opiate receptor development is discussed in relation to the sex hormone-dependent ontogeny of SDN-POA structure. The overlap of critical periods for the development of these structural and chemical sexual dimorphisms suggests a role for endogenous opioids in modulating MPOA development.  相似文献   

9.
R P Hammer 《Brain research》1990,515(1-2):187-192
The density and distribution of mu- and kappa-opiate receptors in the medial preoptic area (MPOA) of male and female rats across the estrous cycle was examined using quantitative in vitro autoradiography of [3H]D-Ala2,MePhe4,Gly-ol5-enkephalin (DAGO), [3H]naloxone and [3H]bremazocine binding. While no difference in kappa-receptor labeling was observed across sex or estrous stage, selective mu-receptor labeling with [3H]DAGO revealed a significant variation of density and distribution in the MPOA across the estrous cycle and between sexes. A dense concentration of mu-receptors located in the central, sexually dimorphic portion of the MPOA was observed during metestrus and diestrus in females, but not during proestrus nor in males. This region appeared to be the same as that labeled similarly using [3H]naloxone. These results suggest that a regional substrate for functional activation by endogenous opioid peptides (e.g. beta-endorphin) is cyclically regulated in females, which may explain the gonadal steroid-dependent effects of MPOA beta-endorphin on lordosis and luteinizing hormone secretion in females.  相似文献   

10.
Neurogenesis and morphogenesis in the rat bed nucleus of the stria terminalis (strial bed nucleus) were examined with [3H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [3H]thymidine on 2 consecutive gestational days. Nine groups of embryos were exposed to [3H]thymidine on E13-E14, E14-E15,... E21-E22, respectively. On P60, the percentage of labeled cells and the proportion of cells originating during 24-hour periods were quantified at six anteroposterior levels in the strial bed nucleus. On the basis of neurogenetic gradients, the strial bed nucleus was divided into anterior and posterior parts. The anterior strial bed nucleus shows a caudal (older) to rostral (younger) neurogenetic gradient. Cells in the vicinity of the anterior commissural decussation are generated mainly between E13 and E16, cells just posterior to the nucleus accumbens mainly between E15 and E17. Within each rostrocaudal level, neurons originate in combined dorsal to ventral and medial to lateral neurogenetic gradients so that the oldest cells are located ventromedially and the youngest cells dorsolaterally. The most caudal level has some small neurons adjacent to the internal capsule that originate between E17 and E20. In the posterior strial bed nucleus, neurons extend ventromedially into the posterior preoptic area. Cells are generated simultaneously along the rostrocaudal plane in a modified lateral (older) to medial (younger) neurogenetic gradient. Ventrolateral neurons originate mainly between E13 and E16, dorsolateral neurons mainly between E15 and E16, and medial neurons mainly between E15 and E17. The youngest neurons are clumped into a medial "core" area just ventral to the fornix. For morphogenesis, pregnant females were given a single injection of [3H]thymidine during gestation, and their embryos were removed either 2 hours later (short survival) or in successive 24-hour periods (sequential survival). The embryonic brains were examined to locate areas of intensely labeled cells in the putative neuroepithelium of the strial bed nucleus, to trace migratory waves of young neurons, and to establish their final settling locations. Two different neuroepithelial sources produce neurons for the strial bed nucleus. The anterior strial bed nucleus is generated by a neuroepithelial zone at the base of the inferior horn of the lateral ventricle from the anterior commissural decussation area forward to the primordium of the nucleus accumbens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The volume of an intensely staining component of the preoptic area of the male rat is markedly larger than that of the female. Moreover, its volume in both sexes is altered by perinatal hormone exposure consistent with the view that this brain region undergoes hormone dependent sexual differentiation. The present study was carried out to determine if this sexually dimorphic area of the brain has a greater cell density than that of the surround, and if a unique population or distribution of cells, either within one sex or between males and females, characterized this region. A single coronal paraffin section (10 m?m) through the approximate center of this sexually dimorphic area in four adult gonadectomized rats of each sex was evaluated systematically. Each cell was labelled as being inside or outside of the sexually dimorphic area. In addition to cell density per unit area the following parameters were evaluated through a closed circuit video system: cell size, staining intensity, shape, and the presence of processes and of a nucleolus. The presence of a nucleolus was further used to identify neurons within the total population of almost 5000 cells that was evaluated. In both sexes, the sexually dimorphic area was characterized by a significantly increased cell density per unit area compared to that of the surround. On this basis, the term, the Sexually Dimorphic Nucleus of the Preoptic Area (SDN-POA) is proposed, for this region. Moreover, the SDN-POA of the male was characterized by increased neuronal density per unit area. The SDN-POA in the male was also found to contain larger cells and neurons, as determined by direct measurement of their greatest diameter, as well as a greater percentage of cells and neurons rated large on a three-point scale (small, medium, and large). No consistent differences in frequency distribution by stain intensity, shape, or the presence of cell processes were found to characterize the SDN-POA or contribute to the sexual dimorphism. It is concluded that the marked sex difference in the volume of the SDN-POA is due principally to an increase in the male of the total area of higher cell and neuronal density. However, the present results do not eliminate the possibility that more subtle differences in neuronal characteristics may exist in the SDN-POA.  相似文献   

12.
The development of estrogen receptors was investigated in vivo in the brains of fetal and neonatal mice 2 h after administering [3H]moxestrol to the pregnant mothers or neonates. Moxestrol bypasses the alpha-fetoprotein 'protective barrier' and gains access to estrogen receptors. Analysis of [3H]moxestrol uptake by radioautography and by cell nuclear isolation and counting of radioactivity revealed a marked increase in the number of estrogen receptors and estrophilic cells in the brain during late fetal and early postnatal development. Assays of cytosol estrogen receptors were conducted in parallel and revealed a comparable pattern of development. The increase in estrogen receptors and labeling was especially great from embryonic day (E) 15 to E18. Cytosol assays revealed a low level of receptors in the whole brain on E13. Radioautography revealed that clearly labeled cells in the hypothalamus and preoptic area were virtually absent on E13 but were evident on E15, with marked increases occurring between E15 and E18, both in number of labeled cells and in intensity of labeling per cell. Within the cerebral cortex the dorsal cingulate cortex was the most extensively labeled area; however, clearcut labeling was not evident on E13 or E15. Thus, the development of cortical estrogen receptors occurs somewhat later than that in the hypothalamus and preoptic area. The perinatal increase in estrogen receptors usually begins several days after the birthdates of neurons in these estrophilic regions of the brain, and corresponds to the early responsiveness of these neurons to the organizational and activational influences of estrogen.  相似文献   

13.
The sexually dimorphic nucleus of the preoptic area (SDN-POA) is larger in volume in males, is responsive to steroids developmentally, and contains a subpopulation of late-arising neurons that can be specifically labeled with 3H-thymidine on embryonic day 18 (E18). The cytoarchitecture of this region has been described, and one component, the central part of the medial preoptic nucleus (MPNc), shows considerable overlap with the SDN-POA. One goal of the present study was to relate the two by determining if testosterone propionate (TP) exposure perinatally increases MPNc volume and neuronal number, and by characterizing the distribution of the late arising neurons of the SDN-POA with respect to the MPNc. A second goal was to determine if these late-arising neurons are a representative, hormone-sensitive population. Finally, TP exposure was delayed past the time of the endogenous testosterone surge in males and after the neurons have become postmitotic, to determine if female brain structure could still be sex-reversed under these conditions. Pregnant rats were injected on E18 with 3H-thymidine. Daily injections of 2.0 mg TP were given to the mothers starting on either E16 or E20 and continued through birth. The pups were injected daily with 100 micrograms TP from birth through postnatal day 10. Control rats, from mothers given oil from E16 until birth, were injected with oil from birth through postnatal day 10. Rats were sacrificed at 30 days of age and their brains processed for autoradiography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The density and distribution of μ- and κ-opiate receptors in the medial preoptic area (MPOA) of male and female rats across the estrous cycle was examined using quantitative in vitro autoradiography of [3H]D-Ala2,MePhe4,Gly-ol5-enkephalin (DAGO), [3H]naloxone and [3H]bremazocine binding. While no difference in κ-receptor labeling was observed across sex or estrous stage, selective μ-receptor labeling with [3H]DAGO revealed a significant variation of density and distribution in the MPOA across the estrous cycle and between sexes. A dense concentration of μ-receptors located in the central, sexually dimorphic portion of the MPOA was observed during metestrus and diestrus in females, but not during proestrus nor in males. This region appeared to be the same as that labeled similarly using [3H]naloxone. These results suggest that a regional substrate for functional activation by endogenous opiod peptides (e.g. β-endorphin) is cyclically regulated in females, which may explain the gonadal streoid-dependent effects of MPOA β-endorphin on lordosis and luteinizing hormone secretion in females.  相似文献   

15.
We previously reported that male rat lumbar motoneurons accumulate radioactivity after injection of tritiated testosterone (T) or dihydrotestoster-one (DHT), but not estradiol (E). We now report autoradiographic evidence that lumbar motoneurons in male rats accumulate T or its metabolites more frequently than do female motoneurons. However, this sex difference in hormone accumulation by motoneurons is not observed following the injection of DHT or E, both of which are normal metabolites of T. Very few motoneurons from any population accumulated E or its metabolites. In fact, some motoneurons had fewer silver grains over their nuclei than would be expected by chance, thus suggesting that these cells not only failed to accumulate E or its metabolites, but actively or passively excluded them from their nuclei. Virtually every motoneuron of either sex accumulated hormone after DHT injection. Following T injection, more motoneurons were labeled in males (72–77%) than in females (28ndash39%), indicating a sex difference in hormone accumulation. Taken together, these results suggest that either (1) there are separate receptors for T and DHT, and motoneurons have more T receptors (but equal numbers of DHT receptors) in males than in females, or (2) the motoneurons of male rats have greater access to systemically administered T or its metabolites than do those of females.  相似文献   

16.
Noradrenergic-opioid interaction in the medial preoptic area (MPOA) was examined in ovariectomised adult rats which were oestrogen-treated and had been injected neonatally with either testosterone propionate (TP) or vehicle (oil). The first experiment involved electrical stimulation of the ventral noradrenergic tract (VNAT) in anaesthetised rats. Blood samples were collected before and after the stimulation to determine plasma levels of luteinising hormone (LH). Approximately half of the animals received naloxone i.v. 15 min before the onset of stimulation. In all groups, stimulation of VNAT elicited a significant increase in plasma LH concentration. However, pretreatment with naloxone in androgenised rats, but not in oil-treated animals, almost doubled the LH increment due to stimulation. Naloxone had no effect on plasma LH concentrations in unstimulated control rats. In the second experiment hypothalamic slices containing the MPOA were preincubated with [3H]noradrenaline [( 3H]NA) and then subjected to electrical field stimulation under the conditions of (a) no drug added and (b, c) morphine superfusion without and with naloxone. The opioid agonist morphine significantly reduced the net release of [3H]NA in normal and TP-treated female rats. Addition of equimolar naloxone reversed this effect in normal females, whereas in the androgenised group it not only reversed this effect but elicited a significant increase in [3H]NA release. From these data we conclude that (1) neonatal testosterone treatment alters noradrenergic-opioid interaction regulating LH secretion in adult females and (2) the site of this change may be the presynaptic opioid input to the noradrenergic terminals in the MPOA.  相似文献   

17.
Neural basis of maternal behavior in the rat   总被引:2,自引:0,他引:2  
This article presents a review of the neural and neurochemical regulation of maternal behavior in the rat, emphasizing the role of the medial preoptic area (MPOA) and its neural connections in this regulation. Evidence for the role of the MPOA includes the following and will be discussed: (1) Axon-sparing lesions of the MPOA disrupt maternal behavior, indicating the involvement of MPOA neurons rather than fibers of passage. (2) Estradiol acts on the MPOA to facilitate maternal behavior. (3) An MPOA-to-lateral preoptic area-to-ventral tegmental area circuit may be part of the output pathway by which the MPOA influences maternal behavior. (4) MPOA neural circuitry may interact with olfactory neural circuitry and with the motor system to influence maternal responsiveness. (5) Opioid neural pathways appear to inhibit, and oxytocinergic neural pathways appear to promote, maternal behavior.  相似文献   

18.
The densely staining group of cells referred to as the sexually dimorphic nucleus of the preoptic area (SDN-POA) is greater in volume in the male than in the female rat. Because we and others have reported absolute volumes that have been consistent within individual studies but that vary considerably, we characterized the SDN-POA by describing its morphology with respect to the cytoarchitectonic divisions of the medial preoptic nucleus (MPN) in intact and gonadectomized rats. We report three major findings: the SDN-POA is heterogeneous and is composed of cells belonging to three distinct cytoarchitectonic divisions; the cytoarchitecture of the MPN and its medial and lateral divisions (MPNm and MPNl, respectively) in male rats appear to be influenced by the hormonal status in adulthood; and a small anteroventral division of the MPN (MPNav) is present in males but virtually absent in females. Specifically, the SDN-POA is located within the MPNm, but consists of subcomponents located within the central division of the MPN (MPNc), the MPNav, and part of the MPNm-exclusive of the MPNc and MPNav. The percentage of the total SDN-POA located within the MPNc and MPNav. The percentage of the total SDN-POA located within the MPNc and MPNav was greater in males, and that in the MPNm-exclusive of the MPNc and MPNav was greater in females, indicating that the SDN-POA has a different cytoarchitectonic composition in the two sexes. Gonadectomy produced no significant differences in SDN-POA volume, but the MPN, MPNl, and MPNm were significantly reduced in gonadectomized versus intact males, suggesting an activational effect of testicular hormones on these structures.  相似文献   

19.
The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs   总被引:1,自引:0,他引:1  
Androgenic steroids have been implicated in the development of sex differences in Xenopus laevis frogs. In order to determine when neurons first acquire the ability to concentrate androgen, we prepared autoradiograms of CNS in developing frogs following injection of tritiated dihydrotestosterone (DHT). X. laevis tadpoles and juveniles from stage 60 to 2 months post-metamorphosis (PM) were injected with [3H]DHT. Brain and spinal cord autoradiograms from these animals were examined for the presence of labelled cells. The pattern of [3H]DHT labelling in stage-64 tadpoles and in PM juveniles was similar but not identical to that seen in adults. Heavily labelled cells were seen in the motor nucleus of cranial nerves IX and X, medullary reticular formation, a presumed sensory nucleus of cranial nerve V, pretrigeminal nucleus of the dorsal tegmental area of the medulla, laminar nucleus of the torus semicircularis, anterior pituitary, ventral thalamus and anterior spinal cord. The vestibular sensory nucleus of cranial nerve VIII was the only area that concentrates DHT in adults but did not contain labelled cells in young animals. No [3H]DHT-labelled cells were found in stage-60 tadpoles. The onset of androgen concentrating capability in X. laevis CNS thus probably occurs between stages 60 and 64.  相似文献   

20.
Mechanisms involved in the developmental organization of the rat striatum were investigated in vitro. The neurons of the patch and matrix compartments were preferentially labeled in vivo with a [3H]thymidine injection on embryonic day (E) 13 or 18, respectively. Two or 7 days later the striatum was removed, dissociated into a single cell suspension and plated on a collagen-coated substrate. After 5 days in culture the neurons had migrated into aggregates. Within an individual aggregate, neurons labeled on E13 tended to clump together, whereas neurons labeled on E18 were randomly dispersed. Comparing between aggregates, [3H]thymidine-labeled E13 cells were located in aggregates containing numerous other labeled E13 cells, whereas [3H]thymidine-labeled E18 cells were dispersed randomly between aggregates. These results suggest that early born striatal neurons (primarily patch cells) selectively associate with each other, and that this process may be crucial to the developmental compartmentalization of the rat striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号