首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Luria R  Vogel EK 《Neuropsychologia》2011,49(6):1632-1639
The integrated object view of visual working memory (WM) argues that objects (rather than features) are the building block of visual WM, so that adding an extra feature to an object does not result in any extra cost to WM capacity. Alternative views have shown that complex objects consume additional WM storage capacity so that it may not be represented as bound objects. Additionally, it was argued that two features from the same dimension (i.e., color-color) do not form an integrated object in visual WM. This led some to argue for a “weak” object view of visual WM. We used the contralateral delay activity (the CDA) as an electrophysiological marker of WM capacity, to test those alternative hypotheses to the integrated object account. In two experiments we presented complex stimuli and color-color conjunction stimuli, and compared performance in displays that had one object but varying degrees of feature complexity. The results supported the integrated object account by showing that the CDA amplitude corresponded to the number of objects regardless of the number of features within each object, even for complex objects or color-color conjunction stimuli.  相似文献   

2.
The deployment of visual attention can be strongly modulated by stimuli matching the contents of working memory (WM), even when WM contents are detrimental to performance and salient bottom-up cues define the critical target [D. Soto et al. (2006) Vision Research, 46, 1010–1018]. Here we investigated the electrophysiological correlates of this early guidance of attention by WM in humans. Observers were presented with a prime to either identify or hold in memory. Subsequently, they had to search for a target line amongst different distractor lines. Each line was embedded within one of four objects and one of the distractor objects could match the stimulus held in WM. Behavioural data showed that performance was more strongly affected by the prime when it was held in memory than when it was merely identified. An electrophysiological measure of the efficiency of target selection (the N2pc) was also affected by the match between the item in WM and the location of the target in the search task. The N2pc was enhanced when the target fell in the same visual field as the re-presented (invalid) prime, compared with when the prime did not reappear in the search display (on neutral trials) and when the prime was contralateral to the target. Merely identifying the prime produced no effect on the N2pc component. The evidence suggests that WM modulates competitive interactions between the items in the visual field to determine the efficiency of target selection.  相似文献   

3.
In the lateralized change detection task, two item arrays are presented, one on each side of the display. Participants have to remember the items in the relevant hemifield and ignore the items in the irrelevant hemifield. A difference wave between contralateral and ipsilateral slow potentials with respect to the relevant items, the contralateral delay activity, can be calculated. As its amplitude varies with the number of items held in working memory (WM) and reaches its asymptote with WM capacity, it is considered a pure neural correlate of visual WM load. However, in addition to this contralateral delay activity, load-dependent activity has also been observed over the hemisphere ipsilateral to the relevant hemifield, suggesting that the ipsilateral hemisphere is also involved in memory-related processes. This ipsilateral activity might either reflect a bilateral processing of relevant or else a lateralized processing of irrelevant, to-be-filtered-out items. As in the lateralized change detection task, the number of items on both sides of the display is typically identical, it was not possible to decide between these alternatives yet. To disentangle the influence of relevant and irrelevant items, we orthogonally varied the number of both types of items. Processing of relevant items caused purely contralateral load-dependent activity. Ipsilateral slow potentials were influenced by the number of irrelevant items only if visual WM load was low, but not if it was high. This suggests that whether irrelevant items are processed or filtered out depends on visual WM load.  相似文献   

4.
Arend AM  Zimmer HD 《Neuropsychologia》2012,50(10):2379-2388
In this training study, we aimed to selectively train participants' filtering mechanisms to enhance visual working memory (WM) efficiency. The highly restricted nature of visual WM capacity renders efficient filtering mechanisms crucial for its successful functioning. Filtering efficiency in visual WM can be measured via the lateralized change detection task with distractors. From an array of items, only a subsample must be memorized (targets), whereas distractors must be filtered out. From the EEG recorded while items are maintained in memory, slow potentials over posterior recording sides can be extracted. In addition, the contralateral delay activity (CDA) can be calculated as the difference wave between contralateral and ipsilateral slow potentials. As the amplitudes of contralateral slow potentials and CDA reflect the number of remembered items, one can infer if distractors were filtered out. Efficient filtering mechanisms are also highly important in multiple object tracking (MOT). We trained participants' filtering ability with the aid of this latter task. Filtering in both tasks is assumed to happen via allocation of selective attention. We observed large training-induced improvements in MOT. However, these improvements did not transfer to improved filtering mechanisms in the change detection task. Instead, we obtained suggestive evidence for an overall improvement in filtering mechanisms in the change detection task for both the training and control group. Apparently, there exist differences in the exact nature of filtering mechanisms that operate in change detection and MOT.  相似文献   

5.
Theoretically, working memory (WM) representations are encoded by population activity of neurons with distributed tuning across the stored feature. Here, we leverage computational neuroimaging approaches to map the topographic organization of human superior colliculus (SC) and model how population activity in SC encodes WM representations. We first modeled receptive field properties of voxels in SC, deriving a detailed topographic organization resembling that of the primate SC. Neural activity within human (5 male and 1 female) SC persisted throughout a retention interval of several types of modified memory-guided saccade tasks. Assuming an underlying neural architecture of the SC based on its retinotopic organization, we used an encoding model to show that the pattern of activity in human SC represents locations stored in WM. Our tasks and models allowed us to dissociate the locations of visual targets and the motor metrics of memory-guided saccades from the spatial locations stored in WM, thus confirming that human SC represents true WM information. These data have several important implications. They add the SC to a growing number of cortical and subcortical brain areas that form distributed networks supporting WM functions. Moreover, they specify a clear neural mechanism by which topographically organized SC encodes WM representations.SIGNIFICANCE STATEMENT Using computational neuroimaging approaches, we mapped the topographic organization of human superior colliculus (SC) and modeled how population activity in SC encodes working memory (WM) representations, rather than simpler visual or motor properties that have been traditionally associated with the laminar maps in the primate SC. Together, these data both position the human SC into a distributed network of brain areas supporting WM and elucidate the neural mechanisms by which the SC supports WM.  相似文献   

6.
Working memory (WM) impairment is a core feature of schizophrenia (SZ), but the integrity of the various components of WM is unclear. After encoding, mental representations must be maintained in WM during the delay period. In addition to maintenance, manipulation of internal representation can occur in WM. It has been argued that manipulation of items in WM is more impaired than simple maintenance in SZ, but direct empirical data to support this claim have been mixed. Discrepant findings among studies might be explained by task parameters, specifically the degree to which the manipulation task places demands on encoding and maintenance processes. The present study set out to examine these components of WM in patients with SZ (n = 20) and demographically matched healthy controls (n = 19) using a spatial delayed response task (DRT) to measure maintenance processes and 2 mental rotation tasks (allocentric and egocentric) with no delay period or restriction on encoding time to measure manipulation processes. Consistent with previous findings, patients were impaired on the spatial DRT. However, patients performed equally well on the egocentric mental rotation task and were more accurate than controls on the allocentric mental rotation task as the required degree of rotation increased. These results indicated impaired maintenance and spared manipulation of representations in WM and suggest a pocket of cognitive function that might be enhanced in SZ.  相似文献   

7.
It is widely assumed that the short-term retention of information is accomplished via maintenance of an active neural trace. However, we demonstrate that memory can be preserved across a brief delay despite the apparent loss of sustained representations. Delay period activity may, in fact, reflect the focus of attention, rather than STM. We unconfounded attention and memory by causing external and internal shifts of attention away from items that were being actively retained. Multivariate pattern analysis of fMRI indicated that only items within the focus of attention elicited an active neural trace. Activity corresponding to representations of items outside the focus quickly dropped to baseline. Nevertheless, this information was remembered after a brief delay. Our data also show that refocusing attention toward a previously unattended memory item can reactivate its neural signature. The loss of sustained activity has long been thought to indicate a disruption of STM, but our results suggest that, even for small memory loads not exceeding the capacity limits of STM, the active maintenance of a stimulus representation may not be necessary for its short-term retention.  相似文献   

8.
We compared the electrophysiological correlates for the maintenance of non-musical tones sequences in auditory short-term memory (ASTM) to those for the short-term maintenance of sequences of coloured disks held in visual short-term memory (VSTM). The visual stimuli yielded a sustained posterior contralateral negativity (SPCN), suggesting that the maintenance of sequences of coloured stimuli engaged structures similar to those involved in the maintenance of simultaneous visual displays. On the other hand, maintenance of acoustic sequences produced a sustained negativity at fronto-central sites. This component is named the Sustained Anterior Negativity (SAN). The amplitude of the SAN increased with increasing load in ASTM and predicted individual differences in the performance. There was no SAN in a control condition with the same auditory stimuli but no memory task, nor one associated with visual memory. These results suggest that the SAN is an index of brain activity related to the maintenance of representations in ASTM that is distinct from the maintenance of representations in VSTM.  相似文献   

9.
Event-related potential measures of visual working memory.   总被引:2,自引:0,他引:2  
Visual working memory is a limited capacity system that temporarily maintains information about objects in the immediate visual environment. Psychophysical experiments have shown that most people are able to actively maintain 3 or 4 items in visual working memory at any point in time. To better understand how this process works and why our working memory capacity is so limited, a variety of neurophysiological approaches have been employed. In recent years, there has been a surge of interest in understanding how visual information is maintained in working memory at the neural level. Single-cell research with nonhuman primates has shown that neuronal firing during the retention period reflects the information that is currently held in working memory. In humans, event-related potentials (ERPs) have been used to examine the maintenance of information in working memory. An event-related potential component, known as the negative slow wave (NSW), has been used to measure the maintenance of information in working memory "online" during a given trial. More recently, another ERP component, the contralateral delay activity (CDA) has been shown to be a fairly specific correlate of the current contents of working memory. This component is sensitive to an individual's working memory capacity and may provide a window into the operations of this central cognitive construct.  相似文献   

10.
The present study contrasted the neural correlates of encoding item-context associations according to whether the contextual information was visual or auditory. Subjects (N = 20) underwent fMRI scanning while studying a series of visually presented pictures, each of which co-occurred with either a visually or an auditorily presented name. The task requirement was to judge whether the name corresponded to the presented object. In a subsequent memory test subjects judged whether test pictures were studied or unstudied and, for items judged as studied, indicated the presentation modality of the associated name. Dissociable cortical regions demonstrating increased activity for visual vs. auditory trials (and vice versa) were identified. A subset of these modality-selective regions also showed modality-selective subsequent source memory effects, that is, enhanced responses on trials associated with correct modality judgments relative to those for which modality or item memory later failed. These findings constitute direct evidence for the proposal that successful encoding of a contextual feature is associated with enhanced activity in the cortical regions engaged during the on-line processing of that feature. In addition, successful encoding of visual objects within auditory contexts was associated with more extensive engagement of the hippocampus and adjacent medial temporal cortex than was the encoding of such objects within visual contexts. This raises the possibility that the encoding of across-modality item-context associations places more demands on the hippocampus than does the encoding of within-modality associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号