首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Neurological research》2013,35(9):969-976
Abstract

Background: In the adult mammalian brain, it is considered that neurogenesis persists in limited regions such as the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. On the other hand, neurogenesis in the cortex after cerebral ischemia and its role in post-stroke recovery have not been clarified yet. In this study, we investigated neurogenesis in the cortex and the spatiotemporal profile of neural progenitors in SVZ and DG of rats subjected to transient focal cerebral ischemia.

Materials and methods: Male Sprague–Dawley rats (270–300 g) were subjected to 60 minute middle cerebral artery occlusion. Proliferating cells were labeled by the cumulative administration of BrdU 1, 2, 3, 4, 6 and 8 weeks after ischemia induction (at weeks 1–4, 6 and 8). Double labeling was also performed with antibodies against BrdU and NeuN.

Results: BrdU-positive cells proliferated in DG and SVZ of the bilateral hemispheres, and their proliferation peaked at week 3 in SVZ and at week 4 in DG. In the peri-infarct zone of cerebral cortex, BrdU-positive cells co-expressed NeuN from weeks 3 to 8.

Conclusion: Neurogenesis was observed in the cerebral cortex and proliferation of neural progenitors occurred in SVZ and DG of rats subjected to transient focal cerebral ischemia. Our data might indicate that endogenous dormant neural stem cells residing in the cortex were activated by ischemic insult to induce the proliferation of neural progenitors and differentiation into mature neurons.  相似文献   

2.
《Neurological research》2013,35(4):422-428
Abstract

Neural progenitor cells (NPCs) exist not only in the developing brain, but also in certain areas in adult brain in mammals. Recent studies suggest that promoting neurogenesis in adult mammals might provide a therapeutic way to cure age-related neurodegenerative diseases. So, it will be of great value to find out drugs that can increase the proliferation and/or differentiation ability of neural progenitors. The present study investigated the influence of ginsenoside Rg1, an active ingredient of Panax ginseng C.A. Meyer, on proliferation ability of rodent hippocampal progenitor cells both in vitro and in vivo. Incubation of NPCs with ginsenoside Rg1 resulted in significant increase in absorbency value, 3H-thymidine incorporation and the number of proliferating progenitor cell spheres; In addition, 2 weeks Rg1 administration (i.p.) led to marked enhancement of the number of dividing cells in the hippocampus of adult mice. These findings suggest that ginsenoside Rg1 is involved in the regulation of proliferation of hippocampal progenitor cells and this effect may serve as one of the elementary mechanisms underlying its nootropic and anti-aging actions.  相似文献   

3.
Before the 1990s it was widely believed that the adult brain was incapable of regenerating neurons. However, it is now established that new neurons are continuously produced in the dentate gyrus of the hippocampus and olfactory bulb throughout life. The functional significance of adult neurogenesis is still unclear, but it is widely believed that the new neurons contribute to learning and memory and/or maintenance of brain regions by replacing dead or dying cells. Many different factors are known to regulate adult neurogenesis including immune responses and signaling molecules released by immune cells in the brain. While immune activation (i.e., enlargement of microglia, release of cytokines) within the brain is commonly viewed as a harmful event, the impact of immune activation on neural function is highly dependent on the form of the immune response as microglia and other immune-reactive cells in the brain can support or disrupt neural processes depending on the phenotype and behavior of the cells. For instance, microglia that express an inflammatory phenotype generally reduce cell proliferation, survival and function of new neurons whereas microglia displaying an alternative protective phenotype support adult neurogenesis. The present review summarizes current understanding of the role of new neurons in cognition and behavior, with an emphasis on the immune system’s ability to influence adult hippocampal neurogenesis during both an inflammatory episode and in the healthy uninjured brain. It has been proposed that some of the cognitive deficits associated with inflammation may in part be related to inflammation-induced reductions in adult hippocampal neurogenesis. Elucidating how the immune system contributes to the regulation of adult neurogenesis will help in predicting the impact of immune activation on neural plasticity and potentially facilitate the discovery of treatments to preserve neurogenesis in conditions characterized by chronic inflammation.  相似文献   

4.
5.
《Neurological research》2013,35(3):270-273
Abstract

Objective: Transient global ischemia increases neurogenesis in the dentate gyrus of adult rodents and this may have a functional relevance. The aim of the present study was to explore the possible mechanisms underlying the effects of ginsenoside Rg1 on hippocampal neurogenesis in adult gerbils suffered from global ischemia.

Methods: Experimental groups include: Group 1: sham operation; Group 2: sham operation + MK-801 (3 mg/kg); Group 3: ischemia only; Group 4: ischemia + MK-801; Group 5: ischemia + Rg1 (5 mg/kg); Group 6: ischemia + Rg1 + MK-801. At the tenth day after ischemia, six gerbils from Groups 1, 3 and 5 were killed and the activity of inducible nitric oxide synthase (iNOS) in the cortex and hippocampus was measured. The rest animals were given bromodeoxyuridine (BrdU, 50 mg/kg) every 4 hours for 12 hours at the tenth day after ischemia and perfused 24 hours after the last injection of BrdU. Immunohistochemistry was performed to identify proliferating cells in the dentate gyrus.

Results: Ginsenoside Rg1 increased the magnitude of ischemia induced proliferation of hippocampal progenitor cells and enhanced the activity of iNOS in both the hippocampus and cortex. Systematic injection of MK-801 completely blocked the proliferation increasing effect of Rg1.

Conclusion: Ginsenoside Rg1 increases neurogenesis after transient global ischemia. The mechanisms underlying this effect may involve activation of iNOS activity and N-methyl-D-aspartate (NMDA) receptors in the brain.  相似文献   

6.
Since the studies of Ramon y Cajal, a central postulate in neuroscience has been the view that the adult brain lacks the ability to regenerate its neurons. This dogma has been challenged in the last few decades, and mounting evidence has accumulated showing the existence of a phenomenon designated 'adult neurogenesis'. De novo generation of neurons by neural progenitor cells in the adult brain is thought to be preserved only in restricted brain areas, such as the hippocampal dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. Data in the last decade coming mostly from rodent models have clearly documented that precursor cells residing in the anterior portion of SVZ and the subgranular zone of DG are responsible for adding new neurons in the olfactory bulb and DG, respectively. This raised significant interest in the clinical potential of neural progenitor cells, and recent studies have documented that brain injury is capable of activating an endogenous program of neurogenesis resulting in neuronal replacement in various cerebral regions of rodents and primates. If the newly generated neurons in the adult brain prove to be functional, it could have a tremendous impact for cell replacement therapies. Here, we summarize current knowledge of the mechanisms affecting adult hippocampal neurogenesis in both rodents and primates, and discuss its implications in developing novel strategies for the treatment of human neurological diseases.  相似文献   

7.
Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features.  相似文献   

8.
Adult neurogenesis persists throughout life in restricted brain regions in mammals and is affected by various physiological and pathological conditions. The tumor suppressor gene Pten is involved in adult neurogenesis and is mutated in a subset of autism patients with macrocephaly; however, the link between the role of PTEN in adult neurogenesis and the etiology of autism has not been studied before. Moreover, the role of hippocampus, one of the brain regions where adult neurogenesis occurs, in development of autism is not clear. Here, we show that ablating Pten in adult neural stem cells in the subgranular zone of hippocampal dentate gyrus results in higher proliferation rate and accelerated differentiation of the stem/progenitor cells, leading to depletion of the neural stem cell pool and increased differentiation toward the astrocytic lineage at later stages. Pten-deleted stem/progenitor cells develop into hypertrophied neurons with abnormal polarity. Additionally, Pten mutant mice have macrocephaly and exhibit impairment in social interactions and seizure activity. Our data reveal a novel function for PTEN in adult hippocampal neurogenesis and indicate a role in the pathogenesis of abnormal social behaviors.  相似文献   

9.
HIV-1 infection of the brain results in a large number of behavioural defecits accompanied by diverse neuropathological signs. However,it is not clear how the virus produces these effects or exactly how the neuropathology and behavioural defecits are related. In this article we discuss the possibility that HIV-1 infection may negatively impact the process of neurogenesis in the adult brain and that this may contribute to HIV-1 related effects on the nervous system. We have previously demonstrated that the development of the dentate gyrus during embryogenesis requires signaling by the chemokine SDF-1 via its receptor CXCR4. We demonstrated that neural progenitor cells that give rise to dentate granule neurons express CXCR4 and other chemokine receptors and migrate into the nascent dentate gyrus along SDF-1 gradients. Animals deficient in CXCR4 receptors exhibit a malformed dentate gyrus in which the migration of neural progenitors is stalled. In the adult, neurogenesis continues in the dentate gyrus. Adult neural progenitor cells existing in the subgranlar zone, that produce granule neurons, express CXCR4 and other chemokine receptors, and granule neurons express SDF-1 suggesting that SDF-1/CXCR4 signaling is also important in adult neurogenesis. Because the cellular receptors for HIV-1 include chemokine receptors such as CXCR4 and CCR5 it is possible that the virus may interfere with SDF-1/CXCR4 signaling in the brain including disruption of the formation of new granule neurons in the adult brain.  相似文献   

10.
Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate‐limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT‐mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self‐renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration.  相似文献   

11.
12.
《Neurological research》2013,35(8):839-845
Abstract

Recent studies indicate the existence of progenitor cells and their potential for neurogenesis in the subventricular zone (SVZ) and the hippocampus dentate gyrus (DG) of normal adult mammalian brain. Increased neurogenesis has been shown following cerebral ischemia and traumatic brain injury; however, the involvement of neurogenesis in subarachnoid hemorrhage (SAH) has not been examined. Adult male CD-1 mice were subjected to SAH by endovascular perforation of the left anterior cerebral artery. Mice received intraperitoneal injections of the cell proliferation-specific marker 5 ′ -bromodeoxyuridine (BrdU) after SAH induction. BrdU incorporation was examined from 1 to 30 days after SAH by immunohistochemistry. The BrdU-positive cells were detected in SVZ and DG of normal control brain, and were significantly decreased in both areas three days after SAH. The number of these cells had recovered to its control level seven days after SAH. Double staining with BrdU and NeuN indicated that the majority of the BrdU-positive cells migrating into the granular cell layer of the DG became NeuN-positive 30 days after SAH. In conclusion, temporal changes of the neurogenesis as shown in the present study suggest that neurogenesis in the hippocampus may affect functional outcome after SAH. The induction of the neurogenesis can provide therapeutic value against SAH.  相似文献   

13.
Yamaguchi M  Saito H  Suzuki M  Mori K 《Neuroreport》2000,11(9):1991-1996
Neurons are generated from neural progenitor cells not only during development but also in the mature brain. To develop an in vivo system for analyzing neurogenesis, we generated transgenic mice expressing green fluorescent protein (GFP) under the control of regulatory regions of the nestin gene. GFP fluorescence was observed in areas and during periods connected with neurogenesis, including embryonic neuroepithelium, neonatal cerebellum, and hippocampal dentate gyrus and rostral migratory pathway from the subventricular zone to the olfactory bulb in the adult. GFP-positive cells in the adult brain included immature neuronal cells expressing polysialylated NCAM. BrdU labeling experiments revealed that newly generated interneurons which migrated rostrally from the subventricular zone expressed GFP until they reached the olfactory bulb. These results indicate that nestin promoter-GFP transgenic mice can be utilized to visualize the regions of neurogenesis throughout the life of the animals and to follow the migration and differentiation of newly generated neurons.  相似文献   

14.
Fingolimod (FTY720) was the first per os administered disease-modifying agent approved for the treatment of relapsing–remitting multiple sclerosis. It is thought that fingolimod modulates the immune response by activating sphingosine-1 phosphate receptor type 1 (S1P1) on lymphocytes following its in vivo phosphorylation. In addition to its immune-related effects, there is evidence that fingolimod exerts several other effects in the central nervous system, including regulation of the proliferation, survival and differentiation of various cell types and their precursors. In the present study, we have investigated the effect of fingolimod on the production of new neurons in the adult mouse hippocampus and the association of this effect with the ability for pattern separation, an established adult neurogenesis-dependent memory function. Immunofluorescence analysis after chronic administration of a physiologic dose of fingolimod (0.3 mg kg−1) revealed a significant increase in both the proliferation and the survival of neural progenitors in the area of dentate gyrus of hippocampus, compared with control animals. These effects were replicated in vitro, in cultures of murine hippocampal neural stem/precursor cells that express S1P1 receptor, suggesting cell-autonomous actions. The effects of fingolimod on neurogenesis were correlated to enhanced ability for context discrimination after fear conditioning. Since impairment of adult hippocampal neurogenesis and memory is a common feature of many neuropsychiatric conditions, fingolimod treatment may be beneficial in therapeutic armamentarium of these disorders.  相似文献   

15.
Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or cognitive impairment.  相似文献   

16.
Adolescence is a sensitive period of neurodevelopment during which life experiences can have profound effects on the brain. Hippocampal neurogenesis, the neurodevelopmental process of generating functional new neurons from neural stem cells, occurs throughout the lifespan and has been shown to play a role in learning, memory and in mood regulation. In adulthood it is influenced by extrinsic environmental factors such as exercise and stress. Intrinsic factors that regulate hippocampal neurogenesis include the orphan nuclear receptor TLX (Nr2e1) which is primarily expressed in the neurogenic niches of the brain. While mechanisms regulating adult hippocampal neurogenesis have been widely studied, less is known on how hippocampal neurogenesis is affected during adolescence. The aim of this study was to investigate the influence of both TLX and isolation stress on exercise‐induced increases in neurogenesis in running and sedentary conditions during adolescence. Single‐ (isolation stress) wild type and Nr2e1‐/‐ mice or pair‐housed wild type mice were housed in sedentary conditions or allowed free access to running wheels for 3 weeks during adolescence. A reduction of neuronal survival was evident in mice lacking TLX, and exercise did not increase hippocampal neurogenesis in these Nr2e1‐/‐ mice. This suggests that TLX is necessary for the pro‐neurogenic effects of exercise during adolescence. Interestingly, although social isolation during adolescence did not affect hippocampal neurogenesis, it prevented an exercise‐induced increase in neurogenesis in the ventral hippocampus. Together these data demonstrate the importance of intrinsic and extrinsic factors in promoting an exercise‐induced increase in neurogenesis at this key point in life.  相似文献   

17.
Traumatic brain injury(TBI) is a major cause of mortality and morbidity in the pediatric population. With advances in medical care, the mortality rate of pediatric TBI has declined. However, more children and adolescents are living with TBI-related cognitive and emotional impairments, which negatively affects the quality of their life. Adult hippocampal neurogenesis plays an important role in cognition and mood regulation. Alterations in adult hippocampal neurogenesis are associated with a variety of neurological and neurodegenerative diseases, including TBI. Promoting endogenous hippocampal neurogenesis after TBI merits significant attention. However, TBI affects the function of neural stem/progenitor cells in the dentate gyrus of hippocampus, which results in aberrant migration and impaired dendrite development of adult-born neurons. Therefore, a better understanding of adult hippocampal neurogenesis after TBI can facilitate a more successful neuro-restoration of damage in immature brains. Secondary injuries, such as neuroinflammation and oxidative stress, exert a significant impact on hippocampal neurogenesis. Currently, a variety of therapeutic approaches have been proposed for ameliorating secondary TBI injuries. In this review, we discuss the uniqueness of pediatric TBI, adult hippocampal neurogenesis after pediatric TBI, and current efforts that promote neuroprotection to the developing brains, which can be leveraged to facilitate neuroregeneration.  相似文献   

18.
Abstract

Objectives. Although hippocampal neurogenesis has been implicated in mood disorders, the precise role new neurons play in mood regulation is not fully elucidated. Here we examine whether neurogenesis improves mood by facilitating segregation of novel experiences that conflict with older maladaptive memories. Methods. Study 1: Four groups (N = 9 each) of adult male rats (exposed to stress or control conditions plus antidepressant or placebo) underwent active training on the place-avoidance task (PAT) on week 0; tested on recalling the “Initial PAT” on weeks 4 and 8; learning a subtly “Altered PAT” on week 8; and euthanazed on week 9. Study-2: Two groups (N = 12 each) rats tested either on the Initial-PAT or Altered-PAT 3 days post-training and immediately euthanized. Results. Stressed subjects treated with placebo were slower in learning the week 8 Altered Task and had lower neurogenesis rates than non-stressed animals and Stressed subjects given drug (Study 1). Synaptic activation of mature hippocampal neurons inversely correlated with Altered-PAT performance and with neurogenesis rates (Study 2). Conclusions. Increasing neurogenesis enhances acquisition of novel experiences possibly by suppressing activation of mature hippocampal neurons that mediate established, conflicting memories. Therefore, antidepressants may improve mood by stimulating new hippocampal neurogenesis that facilitate detection of positive experiences while suppressing interference from recurring depressogenic thought patterns.  相似文献   

19.
Adult neurogenesis may be functionally important as a mechanism of brain plasticity in physiological conditions and brain repair after injury. Nitric oxide (NO), a diffusible intracellular and intercellular messenger in the mammalian nervous system, has been shown to affect adult neurogenesis in different ways. In the normal brain, NO, synthesized by the neuronal isoform of NO synthase in nitrergic neurons, is a negative regulator of precursor cell proliferation. However, after brain damage, NO overproduction in different neural and nonneural cell types promotes neurogenesis. Recently reported results on the effects of NO on new neuron generation in the adult brain are reviewed, with special attention to the proposed mechanisms of action and functional consequences in health and disease.  相似文献   

20.
Adult neurogenesis mainly occurs in two brain regions, the subventricular zone and the dentate gyrus (DG) of the hippocampus. Neuropeptide Y (NPY) is widely expressed throughout the brain and is known to enhance in vitro hippocampal cell proliferation. Mice lacking either NPY or the Y1 receptor display lower levels of cell proliferation, thereby suggesting a role for NPY in basal in vivo neurogenesis. Here, we investigated whether exogenous NPY stimulates DG progenitors proliferation in vivo. We show that intracerebroventricular administration of NPY increases DG cell proliferation and promotes neuronal differentiation in C57BL/6 adult mice. In these mice, the proliferative effect of NPY is mediated by the Y1 and not the Y2 receptor, as a Y1 ([Leu31,Pro34]), but not a Y2 (NPY3–36), receptor agonist enhanced proliferation. In addition, no NPY‐induced DG cellular proliferation is observed following NPY injection when coadministered with a Y1 antagonist or in the Y1 receptor knockout mouse. These results are in line with data obtained in Y1?/? mice, demonstrating that NPY regulates in vivo hippocampal neurogenesis. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号