首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Kugler P  Schleyer V 《Hippocampus》2004,14(8):975-985
Glutamate is the major excitatory transmitter in the CNS and plays distinct roles in a number of developmental events. Its extracellular concentration, which mediates these activities, is regulated by glutamate transporters in glial cells and neurons. In the present study, we have used nonradioactive in situ hybridization, immunocytochemistry, and immunoblotting to show the cellular and regional expression of the high-affinity glutamate transporters GLAST (EAAT1) and generic GLT1 (EAAT2; glial form of GLT1) in the rat hippocampus during postnatal development (P1-60). The results of transporter expression were compared with the localization and activity pattern of glutamate dehydrogenase (GDH), an important glutamate-metabolizing enzyme. The study showed that both transporters and GDH were demonstrable at P1 (day of birth). The expression of GLAST (detected by in situ hybridization and immunocytochemistry) in the early postnatal development was higher than GLT1. Thereafter, the expression of both transporters increased, showing adult levels at between P20 and P30 (detected by in situ hybridization and immunoblotting). At these time points, the expression of GLT1 appeared to be significantly higher than the GLAST expression. GLT1 and GLAST proteins were demonstrable only in astrocytes. The increase of GDH activities (steepest increase from P5-P8), which were localized preferentially in astrocytes, was in agreement with the increase of transporter expression, preferentially with that of GLT1. These observations suggest that the extent of glutamate transporter expression and of glutamate-metabolizing GDH activity in astrocytes is intimately correlated with the formation of glutamatergic synapses in the developing hippocampus.  相似文献   

2.
3.
Overactivity of glutamatergic neurotransmission in the basal ganglia is known to be closely related to the onset and pathogenesis of Parkinson's disease. Glutamate homeostasis around glutamatergic synapses is tightly regulated by two groups of glutamate transporters: glial glutamate transporters GLT1 (EAAT2) and GLAST (EAAT1), and neuronal glutamate transporter EAAC1. In order to investigate the changes of glutamate transporters after the onset of Parkinson's disease, unilateral 6-hydroxydopamine-lesioned rat, an animal model of Parkinson's disease, was employed. By immunofluorescence and Western blot analyses, GLT1 and GLAST proteins were significantly reduced in the striatum with lesion. No change in GLT1 and GLAST protein was found in the substantia nigra. The reduction of GLT1 protein in the striatum was more prominent than that of GLAST protein (approximately 40% vs. 20%). In addition, EAAC1 protein was found to be increased in the substantia nigra pars reticulata of the lesioned rats but not in the striatum. The present results indicate that reductions of GLT1 and GLAST may impair glutamate homeostasis around glutamatergic synapses in the striatum and contribute to over-spills of glutamate in the system. An increase in the EAAC1 level in the substantia nigra pars reticulata may increase GABA synthesis and enhance GABAergic neurotransmission. These results indicate that there are differential and distinct modulations of glutamate transporters after dopamine denervation in the 6-hydroxydopamine-lesioned rat.  相似文献   

4.
L-glutamic acid is a key chemical transmitter of excitatory signals in the nervous system. The termination of glutamatergic transmission occurs via uptake of glutamate by a family of high-affinity glutamate transporters that utilize the Na+/K+ electrochemical gradient as a driving force. The stoichiometry of a single translocation cycle is still debatable, although all proposed models stipulate an inward movement of a net positive charge. This electrogenic mechanism is capable of translocating the neurotransmitter against its several thousandfold concentration gradient, therefore, keeping the resting glutamate concentration below the treshold levels. The five cloned transporters (GLAST/EAAT1, GLT1/EAAT2, EAAC1/EAAT3, EAAT4, and EAAT5) exhibit distinct distribution patterns and kinetic properties in different brain regions, cell types, and reconstitution systems. Moreover, distinct pharmacological profiles were revealed among the species homologues. GLAST and GLT1, the predominant glutamate transporters in the brain, are coexpressed in astroglial processess, whereas neuronal carriers are mainly located in the dendrosomatic compartment. Some of these carrier proteins may possess signal transducing properties, distinct from their transporter activity. Some experimental conditions and several naturally occurring and synthetic compounds are capable of regulating the expression of glutamate transporters. However, selective pharmacological tools interfering with the individual glutamate carriers have yet to be developed.  相似文献   

5.
Cervical nerve root injury commonly leads to radicular pain. Normal sensation relies on regulation of extracellular glutamate in the spinal cord by glutamate transporters. The goal of this study was to define the temporal response of spinal glutamate transporters (glial glutamate transporter 1 [GLT‐1], glutamate‐aspartate transporter [GLAST], and excitatory amino acid carrier 1) following nerve root compressions that do or do not produce sensitivity in the rat and to evaluate the role of glutamate uptake in radicular pain by using ceftriaxone to upregulate GLT‐1. Compression was applied to the C7 nerve root. Spinal glutamate transporter expression was evaluated at days 1 and 7. In a separate study, rats underwent a painful root compression and were treated with ceftriaxone or the vehicle saline. Glial glutamate transporter expression, astrocytic activation (glial fibrillary acidic protein [GFAP]), and neuronal excitability were assessed at day 7. Both studies measured behavioral sensitivity for 7 days after injury. Spinal GLT‐1 significantly decreased (P < 0.04) and spinal GLAST significantly increased (P = 0.036) at day 7 after a root injury that also produced sensitivity to both mechanical and thermal stimuli. Within 1 day after ceftriaxone treatment (day 2), mechanical allodynia began to decrease; both mechanical allodynia and thermal hyperalgesia were attenuated (P < 0.006) by day 7. Ceftriaxone also reduced (P < 0.024) spinal GFAP and GLAST expression, and neuronal hyperexcitability in the spinal dorsal horn, restoring the proportion of spinal neurons classified as wide dynamic range to that of normal. These findings suggest that nerve root‐mediated pain is maintained jointly by spinal astrocytic reactivity and neuronal hyperexcitability and that these spinal modifications are associated with reduced glutamate uptake by GLT‐1. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Transforming growth factor β1 (TGF‐β1) is a pleiotropic cytokine expressed throughout the CNS. Previous studies demonstrated that TGF‐β1 contributes to maintain neuronal survival, but mechanistically this effect is not well understood. We generated a CNS‐specific TGF‐β1‐deficient mouse model to investigate the functional consequences of TGF‐β1‐deficiency in the adult mouse brain. We found that depletion of TGF‐β1 in the CNS resulted in a loss of the astrocyte glutamate transporter (GluT) proteins GLT‐1 (EAAT2) and GLAST (EAAT1) and decreased glutamate uptake in the mouse hippocampus. Treatment with TGF‐β1 induced the expression of GLAST and GLT‐1 in cultured astrocytes and enhanced astroglial glutamate uptake. Similar to GLT‐1‐deficient mice, CNS‐TGF‐β1‐deficient mice had reduced brain weight and neuronal loss in the CA1 hippocampal region. CNS‐TGF‐β1‐deficient mice showed GluN2B‐dependent aberrant synaptic plasticity in the CA1 area of the hippocampus similar to the glutamate transport inhibitor DL‐TBOA and these mice were highly sensitive to excitotoxic injury. In addition, hippocampal neurons from TGF‐β1‐deficient mice had elevated GluN2B‐mediated calcium signals in response to extrasynaptic glutamate receptor stimulation, whereas cells treated with TGF‐β1 exhibited reduced GluN2B‐mediated calcium signals. In summary, our study demonstrates a previously unrecognized function of TGF‐β1 in the CNS to control extracellular glutamate homeostasis and GluN2B‐mediated calcium responses in the mouse hippocampus.  相似文献   

7.
The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264  相似文献   

8.
9.
10.
Glutamate, the principal excitatory neurotransmitter in the brain, acts on three families of ionotropic receptor--AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid), kainate and NMDA (N-methyl-D-aspartate) receptors and three families of metabotropic receptor (Group I: mGlu1 and mGlu5; Group II: mGlu2 and mGlu3; Group III: mGlu4, mGlu6, mGlu7 and mGlu8). Glutamate is removed from the synaptic cleft and the extracellular space by Na+-dependent transporters (GLAST/EAAT1, GLT/EAAT2, EAAC/EAAT3, EAAT4, EAAT5). In rodents, genetic manipulations relating to the expression or function of glutamate receptor proteins can induce epilepsy syndromes or raise seizure threshold. Decreased expression of glutamate transporters (EAAC knockdown, GLT knockout) can lead to seizures. In acquired epilepsy syndromes, a wide variety of changes in receptors and transporters have been described. Electrically-induced kindling in the rat is associated with functional potentiation of NMDA receptor-mediated responses at various limbic sites. Group I metabotropic responses are enhanced in the amygdala. To date, no genetic epilepsy in man has been identified in which the primary genetic defect involves glutamate receptors or transporters. Changes are found in some acquired syndromes, including enhanced NMDA receptor responses in dentate granule cells in patients with hippocampal sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号