首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pituitary ACTH secretion in the rat is controlled by a number of hypothalamic secretagogues, like CRF and AVP and by inhibitory feedback provided by glucocorticoids. During development, little is known about the precise regulation of ACTH release by hypothalamic neuropeptides and glucocorticoids. We used immunotargeted chemical PVN lesions to investigate the role of CRF and AVP neurons of the hypothalamic paraventricular nucleus (PVN) in the control of ACTH secretion in neonatal rats under basal conditions and 5 days after adrenalectomy (ADX). Neonates aged day (d) 4 or d14 were injected over the PVN with ricin A toxin associated with either non-specific antibodies (IgG/Tx), or monoclonal antibodies directed towards CRF (CRF/Tx) or AVP (AVP/Tx). Rats from each group received either sham surgery (SHAM) or were adrenalectomized (ADX). Pups were sacrificed 5 days after PVN treatment and adrenal surgery (d9 or 19). Plasma ACTH and corticosterone (B) levels were measured by RIAs. Changes in CRF and AVP expression in the PVN and other brain regions were determined by immunohistochemistry (ICC) and in situ hybridization. Injection of the toxin associated with IgGs did not have non specific effects on body weight gain, neuropeptide expression or plasma ACTH and B secretion compared to intact, uninjected rats. Lesions of CRF or AVP neurons greatly reduced peptide expression and mRNA levels in the PVN and median eminence at both ages. However, the specificity of the lesion was greater in older than in young pups. At both ages, we observed a dissociation between the morphological effects of the lesions and hormonal responses. In d14–19 pups, CRF and AVP lesions prevented ADX-induced changes in mRNA levels and peptide expression but did not reduce ACTH secretion under basal or stimulated (post ADX) conditions. However, CRF and AVP lesions increased the expression of CRF in the central amygdala and the bed nucleus of the stria terminalis. Lesions with AVP also stimulated CRF expression in the PVN. Thus, these compensatory changes could take over some of the hypophysiotropic actions of the damaged PVN neurons. In young pups (d4–9), we did not observe the typical increase in CRF and AVP mRNA levels and peptide expression found after ADX in older pups or adults. Lesions of the CRF neurons also affected the AVP system and reciprocally. We suggest that this could be explained by a high degree of colocalization of CRF and AVP observed in parvocellular and small, immature magnocellular neurons in young pups. The lesions did not affect basal or ADX-induced ACTH secretion, suggesting that during the early neonatal period, the pituitary is the major site of glucocorticoid inhibitory feedback on ACTH secretion and that the hypothalamus does not exert a tonic control over basal pituitary secretion. These results unravel ontogenetical differences in the regulation of ACTH secretion by hypothalamic CRF and AVP. During the first 10 days of life, within the adrenal stress hyporesponsive period, hypothalamic CRF and AVP neurons are not sensitive to glucocorticoid feedback and basal ACTH secretion appears to be relatively independent from hypothalamic input. After the second week of life, maturation of glucocorticoid receptors, neuronal phenotype and connections of the PVN to other brain structures (bed nucleus of the stria terminalis, central amygdala) allows for the full expression of corticosterone effect on hypothalamic neurons and for compensatory changes to occur following lesions. These results emphasize the extraordinary capacity of the developing central nervous system to adapt to changes in functionning of some neuronal areas critical for homeostatic balance and the important potential role of intra-hypothalamic and extrahypothalamic relationships in maintaining control over ACTH and glucocorticoid production during development.  相似文献   

2.
In male rats, lesions of the paraventricular nucleus (PVN) of the hypothalamus attenuate, but do not abolish, adrenocorticotropin (ACTH) secretion in response to acute alcohol injection. As the PVN is the major source of corticotropin-releasing factor (CRF) in the median eminence, this observation suggests that extra-PVN brain regions, and/or ACTH secretagogues other than CRF (e.g. arginine vasopressin (AVP)), mediate ACTH stimulation by alcohol. This hypothesis was tested by examining the effect of AVP immunoneutralization in PVN-lesioned (PVNx) rats. Removal of endogenous AVP diminished alcohol-evoked ACTH secretion in both sham-operated and PVNx animals, indicating that AVP from outside the PVN partially mediates the hypothalamic-pituitary-adrenal (HPA) axis response to alcohol. This led us to determine whether alcohol might also regulate AVP steady-state gene expression in the supraoptic nucleus (SON) and PVN, and/or CRF mRNA in the PVN and the central nucleus of the amygdala (AMY). In the magnocellular portion of the PVN, sham-operated animals showed significantly increased PVN levels of both CRF and AVP mRNAs 3 h after alcohol. In the SON, alcohol administration tended to decrease AVP gene expression in PVNx rats, while the drug increased AVP mRNA levels in the SON of sham-operated rats. AMY levels of CRF mRNA were unaffected by these manipulations. Finally, since the regulation of alcohol-induced AVP mRNA levels in the SON appeared to depend on the presence of the PVN, we measured peripheral levels of AVP in both sham-operated and PVNx animals after injection of vehicle or alcohol. Although AVP decreased in all groups, alcohol depressed AVP secretion to a greater extent in PVNx animals, suggesting that AVP systems are more sensitive to inhibition in the absence of the PVN. Our results demonstrate that although AVP of PVN origin may participate in regulating the stimulatory effect to AVP on ACTH secretion, AVP from areas other than the PVN also plays a role. Additionally, regulation of both AVP gene expression in the SON and secretion in the systemic circulation are altered in rats bearing lesions of the PVN.  相似文献   

3.
4.
The effects of repeated electroconvulsive seizures (ECS) on expression of mRNAs coding for corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical (HPA) axis and hypothalamo-neurohypophysial system (HNS) were assessed via semi-quantitative in situ hybridization histochemical analysis. Measures of mRNA content were accompanied by measurement of peptide- and hormone-expression in the relevant neuroendocrine systems. Following 7 daily ECS treatments, CRF mRNA was significantly increased in the medial parvocellular paraventricular nucleus (PVN) of treated rats relative to controls. CRF peptide content of whole PVN homogenates was decreased to 50% of control levels. Changes in CRF message and peptide levels were accompanied by increases in pituitary ACTH content and by elevated plasma corticosterone, suggesting ECS elicits long-term up-regulation of the HPA axis. AVP mRNA in the medial parvocellular PVN, which is known to up-regulate in response to HPA challenge by adrenalectomy, was not increased by ECS. Chronic ECS causes a clear up-regulation of HNS neurons of the supraoptic nucleus, characterized by increased AVP mRNA content, decreased AVP peptide content, and depletion of neurohypophysial AVP. However, no changes were observed in magnocellular vasopressinergic neurons of the PVN, indicating that magnocellular SON and PVN neurons respond differentially to stimulation by ECS. The data indicate that ECS is a potent stimulus for activation of select components of both the HPA axis and the HNS. As such, ECS provides a useful tool for examining mechanism underlying neuroendocrine processes.  相似文献   

5.
Anatomical studies indicate that the ventral subiculum is in a prime position to mediate hippocampal inhibition of the hypothalamo-pituitary-adrenocortical (HPA) axis. The present study evaluated this hypothesis by assessing HPA function following ibotenic acid lesion of the ventral subiculum region. Rats with lesions of the ventral subiculum (vSUB) or ventral hippocampus (vHIPPO) did not show changes in basal corticosterone (CORT) secretion at either circadian peak or nadir time points when compared to sham-lesion rats (SHAM) or unoperated controls. However, rats with vSUB lesions exhibited a prolonged glucocorticoid stress response relative to all other groups. Baseline CRH mRNA levels were significantly increased in the medial parvocellular paraventricular nucleus (PVN) of the vSUB group relative to controls. CRH mRNA differences were particularly pronounced at caudal levels of the nucleus, suggesting topographic organization of vSUB interactions with PVN neurons. Notably, the vHIPPO group, which received large lesions of ventral CA1, CA3 and dentate gyrus without significant subicular damage, showed no change in stress-induced CORT secretion, suggesting that the ventral subiculum proper is principally responsible for ventral hippocampal actions on the HPA stress response. No differences in medial parvocellular PVN AVP mRNA expression were seen in either the vSUB or vHIPPO groups. The results indicate a specific inhibitory action of the ventral subiculum on HPA activation. The increase in CRH biosynthesis and stress-induced CORT secretion in the absence of changes in baseline CORT secretion or AVP mRNA expression suggests that the inhibitory actions of ventral subicular neurons affect the response capacity of the HPA axis.  相似文献   

6.
The hippocampus appears to be involved in tonic regulation of the hypothalamo-pituitary-adrenocortical axis via interactions with corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP)-containing neurons of the hypothalamic paraventricular nucleus (PVN). To further investigate the anatomical basis of such interactions, lesions were made to forebrain fiber tracts in position to communicate inhibitory information from the hippocampus to the PVN. Total fimbria-fornix transections (TFF) and lateral fimbria-fornix lesions (LFF) both significantly increased CRH mRNA levels in the medial parvocellular PVN, as assayed by semi-quantitative in situ hybridization histochemistry. Medial fimbria-fornix lesions or section of the medial corticohypothalamic tracts (MCHT) did not influence CRH mRNA levels. The LFF group showed increases in both AVP mRNA and ACTH secretion, whereas no other lesion was effective in this regard. The results suggest: (1) hippocampal efferents conferring tonic inhibition of the HPA axis probably originate in regions contributing to the lateral extent of the fornix, representing structures in the ventral subiculum and ventral extent of CA1; (2) projections from the hippocampus to the medial basal hypothalamus (travelling in the MCHT) are unlikely to affect HPA function; (3) hippocampus may influence the PVN CRH/AVP neuron at multiple levels, in that LFF and TFF lesions have differential effects on PVN AVP mRNA levels and ACTH secretion.  相似文献   

7.
The influence of chronic stress on the status of the hypothalamo-pituitary-adrenal (HPA) axis of sham-operated and adrenalectomised rats was assessed. Animals underwent bilateral adrenalectomy (ADX) and 3 days later they were either left undisturbed or subjected daily to immobilization for 2 h each morning for 14 days (chronic IMO). In situ hybridization histochemistry revealed that ADX increased corticotropin-releasing factor (CRF) mRNA levels in the paraventricular nucleus of the hypothalamus (PVN) and proopiomelanocortin (POMC) mRNA levels in the anterior pituitary, in both control and chronically stressed rats as measured on the day following the last exposure to stress. Chronic IMO increased CRF mRNA levels in the PVN and POMC mRNA levels in the anterior pituitary of sham-operated rats, as measured on the day following the last exposure to stress. Chronic IMO potentiated the increase in CRF mRNA in the PVN following ADX and resulted in further increases in CRF mRNA above levels seen in adrenal-intact animals. Finally, chronic stress, while not altering basal ACTH levels of ADX rats, reduced the ACTH response of these animals to a novel stressor (tail-shock for 30 min). These results suggest that chronic stress exerts a stimulatory influence at the hypothalamic level that is partially restrained by daily stress-induced glucocorticoid release. Despite the potentiation by chronic stress of CRF mRNA content in the PVN of ADX rats, a blunted circulating ACTH response to an acute short-term stressor was apparent in ADX-chronically stressed rats, suggesting that chronic stress might also alter POMC processing and/or ACTH secretory patterns in the anterior pituitary in ADX animals.  相似文献   

8.
Zelena D  Mergl Z  Makara GB 《Brain research》2005,1031(2):185-193
The hypothalamic-pituitary-adrenal (HPA) axis plays a crucial role in the stress processes. The nucleus paraventricularis hypothalami (PVN) with corticotropin-releasing hormone (CRH)-containing and arginine vasopressin (AVP)-containing neurons is the main hypothalamic component of the HPA. The glutamate, a well-known excitatory neurotransmitter, can activate the HPA inducing adrenocorticotropin hormone (ACTH) elevation. The aim of our study was to examine the involvement of PVN and especially AVP in glutamate-induced HPA activation using agonists of the N-methyl-d-aspartate (NMDA) and kainate receptors. Two approaches were used: in male Wistar rats the PVN was lesioned, and AVP-deficient homozygous Brattleboro rats were also studied. Blood samples were taken through indwelling cannula and ACTH, and corticosterone (CS) levels were measured by radioimmunoassay. The i.v. administered NMDA (5 mg/kg) or kainate (2.5 mg/kg) elevated the ACTH and CS levels already at 5 min in control (sham-operated Wistar or heterozygous Brattleboro) rats. The PVN lesion had no influence on basal ACTH and CS secretion but blocked the NMDA- or kainate-induced ACTH and CS elevations. The lack of AVP in the Brattleboro animals had no significant influence on the basal or glutamate-agonists-induced ACTH and CS elevations. Our results suggest that NMDA and kainate may activate the HPA axis at central (PVN) level and not at the level of pituitary or adrenal gland and that AVP has minor role in glutamate-HPA axis interaction. The time course of the ACTH secretion was different with NMDA or kainate. If we compared the two curves, the results were not coherent with the general view that NMDA activation requires previous kainate activation. Although it has to be mentioned that the conclusion which can be drawn is limited, the bioavailability of the compounds could be different as well.  相似文献   

9.
The stress response is mediated by the hypothalamo–pituitary–adrenal (HPA) system. Activity of the corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) forms the basis of the activity of the HPA-axis. The CRH neurons induce adrenocorticotropin (ACTH) release from the pituitary, which subsequently causes cortisol release from the adrenal cortex. The CRH neurons co-express vasopressin (AVP) which potentiates the CRH effects. CRH neurons project not only to the median eminence but also into brain areas where they, e.g., regulate the adrenal innervation of the autonomic system and affect mood. The hypothalamo-neurohypophysial system is also involved in stress response. It releases AVP from the PVN and the supraoptic nucleus (SON) and oxytocin (OXT) from the PVN via the neurohypophysis into the bloodstream. The suprachiasmatic nucleus (SCN), the hypothalamic clock, is responsible for the rhythmic changes of the stress system. Both centrally released CRH and increased levels of cortisol contribute to the signs and symptoms of depression. Symptoms of depression can be induced in experimental animals by intracerebroventricular injection of CRH. Depression is also a frequent side effect of glucocorticoid treatment and of the symptoms of Cushing's syndrome. The AVP neurons in the hypothalamic PVN and SON are also activated in depression, which contributes to the increased release of ACTH from the pituitary. Increased levels of circulating AVP are also associated with the risk for suicide. The prevalence, incidence and morbidity risk for depression are higher in females than in males and fluctuations in sex hormone levels are considered to be involved in the etiology. About 40% of the activated CRH neurons in mood disorders co-express nuclear estrogen receptor (ER)- in the PVN, while estrogen-responsive elements have been found in the CRH gene promoter region, and estrogens stimulate CRH production. An androgen-responsive element in the CRH gene promoter region initiates a suppressing effect on CRH expression. The decreased activity of the SCN is the basis for the disturbances of circadian and circannual fluctuations in mood, sleep and hormonal rhythms found in depression. Neuronal loss was also reported in the hippocampus of stressed or corticosteroid-treated rodents and primates. Because of the inhibitory control of the hippocampus on the HPA-axis, damage to this structure was expected to disinhibit the HPA-axis, and to cause a positive feedforward cascade of increasing glucocorticoid levels over time. This ‘glucocorticoid cascade hypothesis’ of stress and hippocampal damage was proposed to be causally involved in age-related accumulation of hippocampal damage in disorders like Alzheimer's disease and depression. However, in postmortem studies we could not find the presumed hippocampal damage of steroid overexposure in either depressed patients or in patients treated with synthetic steroids.  相似文献   

10.
Neonatal rats were daily injected with 100 microg/kg T4 and killed at 4, 8 or 15 days. Circulating corticosterone and corticosteroid binding globulin concentrations increased in 8- and 15-day-old rats after T4 treatment. Plasma adrenocorticotropic hormone (ACTH) concentrations, pituitary ACTH content and pro-opiomelanocortin mRNA expression were unaffected in T4-treated rats. T4 treatment induced an increase in corticotropin-releasing factor (CRF) mRNA expression in the whole population of CRF synthesizing cells of the paraventricular nucleus (PVN) that became significant at day 8 and disappeared at day 15. Double labelling in situ hybridization revealed that CRF gene expression in the CRF+/arginine vasopressin (AVP)+ subpopulation was increased at days 4 and 8 and decreased at day 15. CRF immunoreactivity in the zona externa of the median eminence increased with age but was not affected by the experimental hyperthyroidism. The degree of CRF and AVP colocalization, the concentration of AVP mRNA in the parvo and magnocellular cell bodies of the PVN and the density of immunoreactive AVP in the zona interna or zona externa of the median eminence did not change after T4 treatment. Our data demonstrate that experimental hyperthyroidism accelerates the maturation of hypothalamic CRF gene expression, including in particular in the CRF+/AVP+ subpopulation, during the stress hyporesponsive period. These observations suggest that the physiological peak of plasma thyroxine that occurs between days 8-12 may participate in the maturation of hypothalamic CRF cells.  相似文献   

11.
Exposing rats to repeated restraint stress induces well-characterized adaptations in the expression of either corticotropin-releasing factor (CRF) or arginine-vasopressin (AVP) mRNA in the parvocellular neurons of the hypothalamic paraventricular nucleus (PVN). The effects of regulating corticosterone levels on this adaptation was studied in male rats. In intact rats, acute restraint stress increased the expression of CRF mRNA whilst AVP mRNA expression was no different to control. Repeated exposure resulted in habituation of CRF expression, whereas AVP mRNA increased above that seen in either non stressed or acutely stressed animals. In adrenalectomised rats with replacement pellets of corticosterone that replicated blood levels approximating to the daily trough (mean levels 37--65 ng/mL), basal CRF expression levels were raised, but the response to acute stress was still observed. However, the habituation seen in normal animals that had been repeatedly stressed was prevented, so that CRF mRNA levels continued to be raised after repeated stress. By contrast, the AVP response to both acute and repeated stress was unaltered in these low-dose corticosterone-treated rats compared with controls. Higher dose pellets, which resulted in blood levels around those of the daily maximum (mean 118--141 ng/mL) had the opposite effects. There was no change compared to intact rats in the expression of CRF mRNA following either acute or repeated stress, but the expected increase in AVP following repeated restraint was prevented. These experiments show that corticosterone has important modulating effects on the adaptive pattern of both CRF and AVP mRNA expression in the parvocellular PVN. The 'set-point' of corticosterone differs; for CRF, experiencing higher levels is necessary for subsequent adaptation to repeated restraint to occur, whereas for AVP a return to lower levels is necessary to allow this peptide to respond to repeated stress.  相似文献   

12.
The content of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) in the hypothalamic paraventricular nucleus (PVN) increases during chronic morphine treatment. Because these experiments cannot distinguish between increased synthesis or reduced release, the present study measured changes in CRF and AVP mRNAs in the PVN by in situ hybridization. Concomitantly, changes in noradrenaline turnover in the PVN and changes in plasma corticosterone release were determined. Male rats were implanted with placebo (naive) or morphine pellets for 7 days. On day 7, groups of rats received an acute injection of either saline i.p. or morphine (30 mg/kg, i.p.). Acute morphine injection did not change the total size of the labelled area for CRF mRNA in the PVN of naive or morphine-pelleted rats, indicating that the number of CRF-containing neurones was unchanged. On the other hand, in rats chronically treated with morphine, the intensity of labelling for CRF mRNA was significantly reduced, suggesting a decrease in the synthesis of CRF. In placebo rats, injection of saline or morphine did not affect the surface hybridized for AVP mRNA. By contrast, in the morphine-group injected with saline, there was a significant reduction in the number of labelled neurones, measured by the size of labelled area. Similarly, there was a decrease in intensity of AVP mRNA expression in the parvocellular and magnocellular neurones of the PVN in the morphine-group injected with saline, suggesting a decreased synthesis of AVP in these neurones. In parallel with the decrease in the expression of CRF and AVP mRNAs in the PVN, there was a pronounced decrease in noradrenaline turnover and in the release of corticosterone in the morphine-pelleted rats. In conclusion, present results show that, in addition to modifications in corticosterone secretion and in noradrenaline turnover, chronic morphine administration produces a reduction in the synthesis of CRF and AVP.  相似文献   

13.
The effects of centrally injected orexin-A on plasma adrenocorticotropin (ACTH) and corticosterone levels and corticotropin releasing factor (CRF) and arginine vasopressin (AVP) mRNA in the parvocellular cells of the paraventricular nucleus (PVN) of the rat were investigated. In animals implanted previously with a lateral brain ventricle and femoral artery cannula, a single i.c.v. injection of orexin-A (10 microg/rat) resulted in a rapid, significant increase in plasma ACTH and corticosterone concentrations. Plasma ACTH reached a peak (12.5-fold greater than basal levels) at 30 min, which was maintained over 120 min before declining towards control levels by 240 min. Plasma corticosterone concentrations reached a peak (6.7-fold greater than basal levels) at 30 min. Orexin-A at a higher dose (30 microg/rat) also produced a rapid increase in plasma ACTH and corticosterone concentrations. The area under the curve for plasma levels of ACTH was similar for both doses of orexin-A. In a second study, orexin-A (10 microg/rat) was injected i.c.v. and brains and pituitaries were rapidly removed after 240 min. In situ hybridization histochemistry revealed that CRF and AVP mRNA levels were significantly increased in the parvocellular cells of the PVN. Pro-opiomelanocortin mRNA levels in the pituitary gland were not significantly elevated in response to orexin-A. These results suggest that orexin-A is able to act centrally to activate the hypothalamic-pituitary-adrenal axis involving stimulation of both CRF and AVP expression.  相似文献   

14.
15.
Colchicine blockade of axonal transport from the paraventricular nucleus to the median eminence was used to indirectly infer adrenocorticotropin (ACTH) secretagog release in response to a reward presentation and the psychological stressor of frustration. After training rats to drink at the same time of day for 30 min for 2–3 weeks, basal arginine vasopressin (AVP), but not corticotropin-releasing factor (CRF) or oxytocin (OT), concentrations were elevated. The frustration of presenting empty water bottles resulted in increased corticosterone concentrations. Concordantly, CRF, AVP, and OT contents in the median eminence decreased compared to controls. All three secretagogs are thus apparently involved in the corticosterone response to frustration. As expected, water presentation decreased both ACTH and corticosterone. Paradoxically, however, CRF, AVP, and OT contents also decreased compared to controls. The discrepancy of ACTH and corticosterone concentrations declining despite release of secretagogs cannot be explained by decreased adrenal or pituitary sensitivities since both exogenous ACTH and CRF elevated corticosterone and ACTH, respectively, in rewarded rats. Secretagog release, therefore, may not always be associated with stimulation of ACTH release.  相似文献   

16.
Acute activation of the hypothalamic-pituitary-adrenal (HPA) axis releases glucocorticoids to maintain homeostasis, whereas prolonged exposure to elevated glucocorticoids has deleterious effects. Due to the potential benefits of limiting stress-induced glucocorticoid secretion, the present study uses drinking in dehydrated rats as a model to delineate mechanisms mobilized to rapidly inhibit HPA activity during stress. Using Fos expression as an indicator of neuronal activation, the effect of a single or repeated episode of dehydration-induced drinking on the activity of magnocellular and parvocellular neurons in the paraventricular nucleus (PVN) of the hypothalamus was examined. Adult male rats underwent a single episode or repeated (six) episodes of water restriction and were sacrificed before or after drinking water in the AM. Plasma osmolality, vasopressin (AVP), adrenocorticotropic hormone (ACTH) and corticosterone were elevated by water restriction and reduced after drinking in both models. Fos expression was elevated in AVP-positive magnocellular PVN neurons and AVP- and corticotropin releasing hormone (CRH)-positive parvocellular PVN neurons after water restriction. Fos expression was reduced in magnocellular AVP neurons after both models of restriction-induced drinking. In contrast, Fos expression did not change in AVP and CRH parvocellular neurons after a single episode of restriction-induced drinking, but was reduced after repeated episodes of restriction-induced drinking. These data indicate that drinking-induced decreases in glucocorticoids in dehydrated rats involve multiple factors including reduction in magnocellular release of vasopressin and reduction in parvocellular neuronal activity. The differential inhibition of PVN parvocellular neurons after repeated rehydration may reflect a conditioned response to repeated stress reduction.  相似文献   

17.
18.
The distribution and area of label for arginine vasopressin (AVP) mRNA or peptides were studied in rats exposed to cold or novel environments. In situ hybridization histochemistry was employed to detect AVP mRNA in hypothalamic frozen sections with a 45-mer photobiotinylated oligonucleotide probe. The storage of the peptide in both the hypothalamus and the pituitary was determined by immunohistochemistry. Label for mRNA or peptide was then quantified by the Cue-3 color image analysis system. Exposure to 4°C for 30 min caused a 3.5-fold increase in the label for AVP mRNA in the paraventricular nucleus (PVN) compared with that of control rats. This was correlated with a 2-fold elevation in serum ACTH. In addition, rats exposed to 30 min of a novel, thermoneutral (24°C) environment showed a 1.2- to -2.3-fold enhancement of the label for AVP mRNA in the PVN. In contrast, no changes were seen in the supraoptic nucleus (SON) following exposure to either cold or novel environments. Furthermore, neither stress caused significant changes in the storage of AVP peptide in the PVN, SON, median eminence, and posterior lobe of pituitary. This in vivo study demonstrates that PVN and SON neurons respond differentially to cold and novel environment exposures. The elevation of serum ACTH is correlated with the increased level of label for AVP mRNA in the rat hypothalamus, which suggests that AVP may play a role in the regulation of pituitary—adrenal responses to cold and novel environment stresses.  相似文献   

19.
Alcohol administration activates the hypothalamic–pituitary–adrenal (HPA) axis of both male and female rats, with females secreting more adrenocorticotropin (ACTH) and corticosterone than males in response to the same dose of alcohol. Our earlier work suggested that this gender difference arises due to the activational effects of gonadal steroids. In particular, we hypothesized that both androgens and estrogens play a role, with androgens exerting an inhibitory influence while estrogens elevate activity of the HPA. In the present studies, we tested this hypothesis by manipulating steroidal milieu in male rats using surgical castration and chronic implantation of testosterone (T), dihydrotestosterone (DHT), or estradiol (E2). Intact male and female rats were included as controls. Injection of alcohol (3 g/kg b.wt., i.p.) resulted in elevation of blood alcohol levels, ACTH and corticosterone in all groups. However, the amount of ACTH secreted was greater in females and castrated males implanted with E2 than in intact males. In castrated males, regardless of androgen implantation, the ACTH response was intermediate, with mean levels between those of females and males, but not differing significantly from either. In contrast to the ACTH results, significantly higher corticosterone secretion was measured in females and castrated males which did not receive a steroid implant. Since there were no significant differences between groups in blood alcohol levels (BALs), these results are not due to steroid-dependent alterations in alcohol metabolism. Because the ACTH data confirmed an activational effect of E2, we sought to determine whether this steroid regulated levels of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) mRNAs in the paraventricular nucleus of the hypothalamus (PVN). Four pretreatment groups were studied: intact males, intact females, castrated males, and castrated males implanted with E2. Two weeks after surgery, alcohol or vehicle was administered 3 h before brains were collected. In intact males, alcohol treatment elevated levels of both CRF and AVP mRNAs in the PVN, as previously reported. In contrast, this treatment decreased CRF mRNA in castrated males implanted with E2. In addition, steroid pretreatment alone elevated CRF mRNA levels in castrated males. Although we did not observe E2-dependent increases in CRF or AVP mRNAs, our data do support a complex effect of gonadal steroids on expression of these mRNAs in the PVN.  相似文献   

20.
Interoceptive feedback signals from the body are transmitted to hypothalamic neurons that control pituitary hormone release. This review article describes the organization of central neural pathways that convey ascending visceral sensory signals to endocrine neurons in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus in rats. A special emphasis is placed on viscerosensory inputs to corticotropin releasing factor (CRF)-containing PVN neurons that drive the hypothalamic-pituitary-adrenal axis, and on inputs to magnocellular PVN and SON neurons that release vasopressin (AVP) or oxytocin (OT) from the posterior pituitary. The postnatal development of these ascending pathways also is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号