首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Peroxynitrite is assumed to play a crucial role in brain damage associated with the overproduction of nitric oxide (NO). The purpose of this study is to examine time-dependent changes of nitrite and nitrate (NOx) concentration in the circulation, and peroxynitrite formation as well as the expression of inducible nitric oxide synthase (iNOS) in the penumbra of rat brains during transient middle cerebral artery occlusion (MCAO) of Wistar rat for 2 h and reperfusion for 4-70 h. NOx concentration in the circulation was continuously monitored at the right jugular vein by microdialysis. The expression of iNOS was detected at 22-70 h after reperfusion in vascular walls and the cortex. Nitrotyrosine, a marker of peroxynitrite, appeared 4 h after reperfusion in the cortex, increasing substantially at 22-46 h in vascular walls. NOx level in dialysate increased immediately after MCAO. After a gradual decrease, the level increased again 4 h after reperfusion, reaching a maximum at 46 h. Brain myeloperoxidase activity, a marker of neutrophil infiltration, was not detected 4 h after reperfusion, but greatly increased at 22 h and then decreased. These results suggest that a marked increase of NOx level in the circulation might reflect the expression of iNOS, while neuronal NOS may contribute to peroxynitrite formation in the cortex observed at an earlier phase of reperfusion. This study indicates that monitoring NOx level in the circulation serves to assess the progress of stroke, and to determine appropriate therapeutic measures.  相似文献   

2.
目的应用非选择性NOS抑制剂L-NAME和选择性iNOS抑制剂AG治疗鼠大脑中动脉缺血再灌注损伤。通过对脑梗死体积、rCBF和白细胞浸润程度的观察,研究探讨不同类型NOS抑制剂治疗脑梗死的机制。方法采用线检法制作鼠大脑中动脉缺血再灌注模型,不同缺血及再灌注时间测定脑梗死体积、rCBF、缺血脑组织MPO酶活性。结果应用L-NAME(15mg/kg,ip)不但阻碍再灌注后rCBF的恢复,也增加缺血脑组织MPO酶活性(中性白细胞浸润增加),致脑梗死体积增加,脑损害加重;而AG(150mg/kg,ip)可有效降低脑梗死体积,且不影响rCBF的恢复和中性白细胞浸润。结论早期过度抑制神经元和内皮细胞NO对血流量的调节和抗白细胞粘附浸润作用可能是L-NAME加重缺血再灌注脑损害的重要原因之一,而选择性iNOS抑制剂有确切的脑保护作用。  相似文献   

3.
目的 探讨亚低温对大鼠局灶性脑缺血再灌注后不同脑区诱导型一氧化氮合酶(iNOS)表达的影响.方法 雄性SD大鼠,随机分为假手术组、常温缺血组和亚低温组.采用线栓法制作大脑中动脉闭塞再灌注模型,于缺血后48h,观察不同组间组织形态学变化,检测不同脑区iNOS蛋白表达、iNOS活性和产物NO含量.结果 常温缺血后48h,纹状体和皮质均检测到iNOS活性升高和免疫阳性反应,且皮质缺血半暗带区iNOS免疫反应明显强于纹状体和皮质缺血核心区.亚低温明显缩小梗死面积,抑制皮质和纹状体iNOS活性,明显下调半暗带区iNOS蛋白表达,减少NO产生.结论亚低温可能通过减少半暗带区iNOS蛋白表达,抑制iNOS活性,减少NO产生而起到脑保护作用.  相似文献   

4.
一氧化氮合酶在脑缺血再灌注中的双重作用   总被引:14,自引:0,他引:14  
目的 探讨短暂脑缺血再灌注后大鼠脑内3型一氧化氮合酶(nitric oxide synthase,NOS)的表达及作用,为脑缺血治疗提供理论依据。方法 采用免疫组织化学方法,用3型NOS的多克隆抗体检测大鼠局灶性脑缺血2h再灌注15min及22h NOS在脑内的表达情况。结果 大鼠脑缺血2h再灌注15min,在脑缺血边缘区的血管壁及神经细胞出现内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)上调表达;脑缺血2h再灌注22h,在脑梗死区内表达神经元型一氧化氮合酶(neuronal mitric oxide synthase,nNOS)的神经细胞减少,并出现表达诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)的胶质细胞,同时梗死边缘区血管及神经细胞出现eNOS及iNOS的上调表达。结论 在短暂脑缺血再灌注早期,缺血区周围可能有eNOS相关的保护机制;亚急性期eNOS及iNOS的保护及损伤机制并存;因此,在短暂脑缺血早期恢复灌注后予选择性iNOS抑制剂及促进eNOS活性有可能减少迟发性神经损伤。  相似文献   

5.
目的 观察细胞间粘附分子( I C A M1) 蛋白在大鼠脑缺血再灌注的不同时程脑组织中的表达与中性白细胞浸润程度的关系及丹参对它们的影响。方法  S D大鼠分为3 组:假手术组、对照组及丹参组。大脑中动脉缺血2 h 再灌注2 h 、12 h、24 h 、48 h 、72 h 、7 d、14 d 后,分别进行 I C A M1 免疫组织化学及组织 H E染色。结果 在脑缺血再灌早期,脑微血管内皮细胞 I C A M1 免疫反应开始逐渐增加,再灌注48 h 达到高峰,再灌注14 d 接近正常水平,同时脑缺血区中性白细胞浸润也随之增加,在时程上与 I C A M1 表达同步。丹参组,再灌注48 h 后, I C A M1 免疫阳性血管数及中性白细胞的浸润比同时间对照组明显降低。结论 脑缺血 I C A M1 的表达与中性白细胞浸润密切相关,丹参能降低 I C A M1 的表达,抑制中性白细胞的浸润。  相似文献   

6.
N C Royo  F Wahl  J M Stutzmann 《Neuroreport》1999,10(6):1363-1367
The aim of our study was to assess polymorphonuclear neutrophil infiltration into the injured parenchyma after a traumatic brain injury (TBI). Myeloperoxidase (MPO) activity was assayed on the hippocampus, temporal and parietal cortex 6, 24, 48, 72, and 120 h post-trauma. MPO activity occurred in these structures from 6 h post-trauma and was maximum at 24-48 h. It was resolved by 72 h in the hippocampus and the parietal cortex, but persisted in the temporal cortex until 120 h after trauma. This suggests that neutrophil infiltration is a delayed phenomenon in the physiopathology of TBI. Considering that a large therapeutic window may be crucial in the management of TBI, inhibition of neutrophil infiltration needs to be further investigated following cerebral trauma.  相似文献   

7.
目的探讨依达拉奉预处理对小鼠脑缺血再灌注(IR)损伤后皮质一氧化氮合酶(NOS)表达的影响。方法 48只健康ICR小鼠被分为假手术组、对照组和依达拉奉组。依达拉奉组和对照组分别给予依达拉奉3 mg/(kg.d)和同等体积的生理盐水腹腔注射共7 d,然后建立小鼠IR模型;缺血1 h、再灌注24 h时应用2,3,5-氯化三苯基四氮唑(TTC)染色法测量各组脑梗死体积,应用免疫组化法检测各组小鼠皮质神经元型、、诱导型和内皮型NOS(nNOS、iNOS、eNOS)阳性细胞数。结果与假手术组比较,对照组小鼠皮质nNOS、iNOS和eNOS阳性细胞数明显增多(均P<0.05);与对照组比较,依达拉奉组脑梗死体积明显缩小,皮质nNOS和iNOS阳性细胞数明显减少,eNOS阳性细胞数明显增多(均P<0.05)。结论依达拉奉预处理可以影响IR小鼠皮质nNOS、iNOS和eNOS的表达,发挥神经保护作用。  相似文献   

8.
Excitotoxicity and oxidative stress are mechanisms involved in the neuronal cell death induced by the intrastriatal injection of quinolinic acid (QUIN) as a model of Huntington's disease. Production of nitric oxide by nitric oxide synthase (NOS) has been proposed to participate in QUIN-induced neurotoxicity; however, the precise role of NOS in QUIN-induced toxicity still remains controversial. In order to provide further information on the role of NOS isoforms in QUIN toxicity, we performed real time RT-PCR and immunohistochemistry of inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS) and determined Ca(2+)-dependent and Ca(2+)-independent NOS activity in a temporal course (3-48h), after an intrastriatal injection of QUIN to rats. NOS isoforms exhibited a transitory expression of mRNA and protein after QUIN infusion: eNOS increased between 3 and 24h, iNOS between 12 and 24h, while nNOS at 35 and 48h. Ca(2+)-independent activity (iNOS) did not show any change, while Ca(2+)-dependent activity (constitutive NOS: eNOS/nNOS) exhibited increased levels at 3h. Our results support the participation of Ca(2+)-dependent NOS isoforms during the toxic events produced at early times after QUIN injection.  相似文献   

9.
Argininosuccinate-synthetase (ASS), argininosuccinate-lyase (ASL) and nitric oxide synthase (NOS) act in the l-arginine-NO-l-citrulline cycle. In the rat brain, ASS is expressed in neurons, ASL in neurons and astroglia in the striatum, both are co-expressed with nNOS in medium-sized neurons. Microglia cells express iNOS and ASS after activation but no information is available on ASL and on ASS/ASL/iNOS co-expression in this glial population. The present aim was to ascertain, by immunohistochemistry, whether the microglia cells of the rat striatum and fronto-parietal cortex express ASL and ASS in control conditions and after transient ischemia induced by middle cerebral artery occlusion, and whether ASL and ASS are co-expressed with iNOS. The study was conducted 24, 72 and 144 h after reperfusion in two groups of ischemic rats with different tissue damage and survival. ASS and ASL are not expressed by microglia cells in controls while are present in most of the activated microglia cells in the ischemic rats. In those animals with longer survival, ASS and ASL were no more detectable at 144 h, while, in the animals with shorter survival, they were co-expressed with iNOS, but only at 72 h. In the cortex, at variance with the striatum, almost all of nNOS-positive neurons co-expressed ASS and ASL. In conclusion, only activated microglia cells express ASS and ASL, this expression precedes that of iNOS and does not necessarily imply its appearance. Therefore, local factors such as the NO produced by nNOS/ASS/ASL-positive neurons, could influence ASS/ASL-positive microglia cells avoiding or allowing the induction, in these cells, of iNOS.  相似文献   

10.
BACKGROUND AND PURPOSE: Production of nitric oxide is thought to play an important role in neuroinflammation. Previously, we have shown that combined inhibition of neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) can reduce hypoxia-ischemia-induced brain injury in 12-day-old rats. The aim of this study was to analyze changes in expression of nNOS, iNOS and endothelial NOS (eNOS), and nitrotyrosine (NT) formation in proteins in neonatal rats up to 48 h after cerebral hypoxia-ischemia. METHODS: Twelve-day-old rats were subjected to unilateral carotid artery occlusion and hypoxia, resulting in unilateral cerebral damage. NOS and nitrotyrosine expression were determined by immunohistochemistry and Western blot analysis at 30 min-48 h after hypoxia-ischemia. RESULTS: nNOS was increased in both hemispheres from 30 min to 3 h after hypoxia-ischemia. In the contralateral hemisphere, eNOS was decreased 1-3 h after hypoxia-ischemia. In the ipsilateral hemisphere, eNOS was decreased at 0.5 h after hypoxia-ischemia, normalized at 1-3 h and was increased 6-12 h after hypoxia-ischemia. At 24 and 48 h after hypoxia-ischemia, eNOS levels normalized. Surprisingly, iNOS expression did not change from 30 min up to 48 h after hypoxia-ischemia in the ipsi- or contralateral hemisphere. In addition, the regional expression of iNOS in the brain as determined by immunohistochemistry did not change after hypoxia-ischemia. Expression of nitrotyrosine was slightly increased in both hemispheres only at 30 min after hypoxia-ischemia. CONCLUSION: In 12-day-old rat pups, cerebral hypoxia-ischemia induced a transient increase in nNOS, eNOS, and nitrotyrosine in proteins, but no change in iNOS expression up to 48 h after the insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号