首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Twenty undergraduate men participated in a short-term recognition memory experiment in which single words of four types, classified by high and low imagery value and high and low Thorndike-Lorge frequency, were each presented twice unilaterally to the right and left visual fields (RVF, LVF). Stimuli were projected either to the same or to the opposite visual field on successive presentations. Results showed that: (1) imagery value affected responses to initial presentations, but not to repetitions; and (2) the speed and accuracy of recognizing repetitions in the LVF were the same whether the stimuli had been presented initially to the LVF or the RVF, whereas speed and accuracy in the RVF were significantly poorer for words initially presented to the LVF than for words initially presented to the RVF. The latter findings are consistent with differential encoding or with asymmetrical storage of verbal information in the two hemispheres, but not with the hypothesis that the memory store for words is confined to the language-dominant hemisphere.  相似文献   

2.
Studies examining hemispheric asymmetries in false memory have shown that the right hemisphere (RH) is more susceptible to false memories compared to the left hemisphere (LH). Theories suggest that hemispheric asymmetries in true and false memory may be due to differences in representational coding and the use of top-down mechanisms in each hemisphere. In the current study, the Deese–Roediger–McDermott false memory paradigmwas used in conjunction with divided visual field presentation to examine the role of top-down mechanisms in hemispheric asymmetries of true and false memory. In Experiment 1, participants studied lists of related words while completing secondary cognitive load tasks. In Experiment 2, the secondary tasks were administered during memory retrieval instead of memory encoding. Results revealed that cognitive loads imposed during the study phase influenced veridical memory in the LH more than the RH, but cognitive loads imposed during retrieval did not influence veridical memory in either hemisphere. Surprisingly, false memory rates were not influenced by cognitive loads and were higher in the LH. These data provide evidence that, at least for veridical memory, top-down control mechanisms are used more readily for the encoding of information into memory in the LH compared to the RH.  相似文献   

3.
Hemispheric differences in the use of memory retrieval cues were examined in a continuous recognition design, using visual half-field presentation to bias the processing of test words. A speeded recognition task revealed general accuracy and response time advantages for items whose test presentation was biased to the left hemisphere. A second experiment recorded event-related brain potentials in the same design and replicated these behavioral effects, but found no electrophysiological support for the hypothesis that test words biased to the left hemisphere elicit superior recognition. Instead, successful retrieval was accompanied by memory components of identical strength regardless of test field. That robust visual field effects in response accuracy and speed were not mimicked in memory components that generally do correlate with such behavioral differences suggests that patterns in overt responses may be dominated by the left hemisphere's superior ability to apprehend words. Differences between the data pattern observed in the present study with lateralized retrieval and that in a prior study with lateralized encoding [Evans, K. M., & Federmeier, K. D. (2007). The memory that's right and the memory that's left: Event-related potentials reveal hemispheric asymmetries in the encoding and retention of verbal information. Neuropsychologia 45(8), 1777-1790.] support the notion that hemispheric processing is highly integrated in the intact brain, and highlight the need to treat lateralization at different stages as distinct.  相似文献   

4.
Collins MA  Cooke A 《Neuropsychologia》2005,43(10):1529-1545
Forty undergraduate students participated in two experiments designed to investigate the impact of perceptual and conceptual encoding manipulations on implicit memory for emotional words in each cerebral hemisphere. Adopting a transfer appropriate processing approach, the encoding manipulations were designed to promote processing of the surface features of stimuli in Experiment 1, and their semantic meaning in Experiment 2. In both experiments, participants completed the designated encoding task, followed by a lexical decision task where primed and unprimed words were presented to the left (LVF) and right visual fields (RVF). In Experiment 1, implicit memory was observed for RVF presentations of words primed according to their perceptual features. Word valence did not impact on visual field of presentation for primed or unprimed words. In Experiment 2, participation in the conceptual encoding task differentially impacted on processing and implicit memory for emotional words presented in the LVF, where priming the conceptual meaning of words facilitated the processing of positive, relative to negative and non-emotional words. In addition, implicit memory for conceptually primed negative words was reflected in inhibition of primed relative to unprimed negatively valenced words presented in the LVF. In contrast, for RVF presentations, there was evidence of implicit memory for conceptually primed non-emotional words, but not for emotional words. The results are generally consistent with the right hemisphere model of emotion, which posits greater right hemisphere involvement in both the processing and implicit memory of emotional stimuli. The results also support Nagae and Moscovitch's suggestion [Nagae, S., & Moscovitch, M. (2002). Cerebral hemispheric differences in memory of emotional and non-emotional words in normal individuals. Neuropsychologia, 40, 1601-1607] that level of processing be incorporated into studies examining the veracity of the right hemisphere and valence models of emotional processing. The study demonstrated the usefulness of adopting a transfer appropriate processing approach to investigating memory for word valence in each hemisphere.  相似文献   

5.
Functional magnetic resonance imaging (fMRI) was used to examine whether neural pathways used to encode pictures into memory were re-activated during retrieval of those memories. At encoding, subjects semantically classified common objects presented as pictures or words. At retrieval, subjects performed yes/no recognition memory judgments on words that had been encoded as pictures or as words. The retrieval test probed memory for the encoded item, but not memory for the modality of the encoded item (picture/word). Results revealed that a subset of the brain regions involved specifically in encoding of pictures were also engaged during recognition memory for the encoded pictures. Specifically, encoding of pictures relative to words engaged bilateral extrastriate visual cortex, namely fusiform, lingual, middle occipital, and inferior temporal gyri (Broadman area (BA) 18/19/37). Recognition memory judgments about words that were encoded as pictures relative to those that were encoded as words activated fusiform and inferior temporal gyri primarily in the left hemisphere. Thus, cortical areas originally involved in perception of a visual experience become part of the long-term memory trace for that experience. These findings suggest a neural basis for encoding specificity and transfer appropriate processing in human memory.  相似文献   

6.
Visual object recognition contains several stages of information processing carried out along the ventral visual pathway. Brain imaging and behavioural studies have suggested hemispheric asymmetries in object recognition, but the results do not provide a coherent view about the direction of the asymmetries or about the processing stage at which the asymmetries emerge. In order to clarify the contribution of the hemispheres to object recognition, two visual field experiments using normal participants were conducted. Experiment 1 used five different decision-making tasks to study processing at different stages of object recognition. The results showed that familiar objects were recognised faster when presented to the left visual field (LVF) than to the right visual field (RVF) in tasks requiring decisions between familiar objects vs scrambled objects or between familiar objects vs coherent novel objects, suggesting that the right hemisphere is superior in matching visual stimuli to stored representations. Experiment 2 replicated the LVF advantage in object decisions with the novel objects from Experiment 1 that had an unfamiliar overall shape but basic features similar to those of familiar objects. In addition, a RVF advantage emerged with chimeric objects composed by changing parts of familiar objects. The results suggest that the right hemisphere is superior at accessing the overall shape of objects from memory whereas the left hemisphere is superior at analysing whether the parts of objects match to memory representations.  相似文献   

7.
Michael J. Tat 《Laterality》2013,18(2):171-190
It has been suggested that left hemisphere (LH) advantages in verbal processing is due to superior top–down control of verbal information. It is not clear how top–down mechanisms affect the encoding and retrieval of verbal information from hemispheric memory and whether they only influence activation or also encompass the inhibition of verbal information. The directed forgetting method, in conjunction with divided visual field presentation, was used to examine the influence of top–down control mechanisms on hemispheric asymmetries in verbal memory. Participants were cued to remember or forget words. Cues were presented either simultaneously with targets or after a short delay. A recognition memory test using divided visual field presentation was then given. Response times (RTs) revealed effects of cue timing in the LH. With simultaneous cues, RTs were faster to “Remember” words compared to “Forget” words. With delayed cues, RTs for “Remember” and “Forget” words were equivalent. In the right hemisphere (RH), “Remember” words were consistently faster than “Forget” words, regardless of cue timing. These data provide evidence that top–down mechanisms influenced LH verbal memory retrieval more than RH verbal memory retrieval. Finally, there was little evidence to suggest the hemispheres differ in inhibitory processing.  相似文献   

8.
Allan K  Robb WG  Rugg MD 《Neuropsychologia》2000,38(8):1188-1205
The present experiments investigated whether the neural correlates of explicit (conscious) retrieval from episodic memory vary qualitatively according to conditions at encoding, as is predicted by current views of the neural basis of memory retrieval. Event-related potential (ERP) correlates of word stem (e.g. MOT_) cued recall were compared for items studied under different encoding conditions. In Experiment 1, encoding was either 'shallow' or 'deep' whereas in Experiment 2 the presentation modality of the study items was either visual or auditory. In both experiments robust ERP memory effects were observed for stems completed with explicitly retrieved items from each encoding condition. The effects varied in their magnitude, such that they were largest when elicited by the more memorable class of item in each experiment. The scalp distributions of the effects did not differ according to encoding condition, a finding which offers no support for the view that retrieval involves the literal reinstatement of neural activity engaged at the time of encoding. The findings instead point to the existence of a set of retrieval operations that are engaged regardless of the conditions under which retrieved information is encoded.  相似文献   

9.
An hypothesis concerning mnemonic function suggests that perceptual details of previously experienced episodes are retrieved from the cortices that initially processed that information during the encoding phase. Cycowicz et al. [Cycowicz, Y.M., Friedman, D. and Snodgrass, J.G., Remembering the color of objects: an ERP investigation of source memory, Cereb Cortex, 11 (2001) 322-334.] have interpreted the presence of a late negative episodic memory (EM) effect, maximal over parieto-occipital scalp, as a brain signature of the search for and/or retrieval/evaluation of the specific perceptual source-specifying attributes (i.e., color) of pictures in the visual cortical regions that were recruited during the encoding of that information. The present study assessed the validity of this hypothesis. Twelve participants studied pictures outlined in red or green and were subsequently tested with inclusion (i.e., item; old or new regardless of color) and exclusion (i.e., source; same color, different color/new judgments) tasks. In both, old pictures were presented either in the same color as at study or in the alternate color. A late negative, parieto-occipital EM effect was of much larger amplitude in the source compared to the item task. It was of similar magnitude to correctly recognized pictures whose colors were identical at study and test relative to those whose colors changed, and was not modulated by the success or failure of the source retrieval. These data run counter to the initial hypothesis that the late negative EM effect reflects the search for and/or retrieval of specific perceptual attributes such as color. Rather, the late negative EM effect may reflect the search for and/or retrieval/evaluation of more general source-specifying information in the cortical regions that initially processed the stimuli.  相似文献   

10.
Neuroimaging tests of sensorimotor theories of semantic memory hinge on the extent to which similar activation patterns are observed during perception and retrieval of objects or object properties. The present study was motivated by the hypothesis that some of the seeming discrepancies across studies reflect flexibility in the systems responsible for conceptual and perceptual processing of color. Specifically, we test the hypothesis that retrieval of color knowledge can be influenced by both context (a task variable) and individual differences in cognitive style (a subject variable). In Experiment 1, we provide fMRI evidence for differential activity during color knowledge retrieval by having subjects perform a verbal task, in which context encouraged subjects to retrieve more- or less-detailed information about the colors of named common objects in a blocked experimental design. In the left fusiform, we found more activity during retrieval of more- versus less-detailed color knowledge. We also assessed preference for verbal or visual cognitive style, finding that brain activity in the left lingual gyrus significantly correlated with preference for a visual cognitive style. We replicated many of these effects in Experiment 2, in which stimuli were presented more quickly, in a random order, and in the auditory modality. This illustration of some of the factors that can influence color knowledge retrieval leads to the conclusion that tests of conceptual and perceptual overlap must consider variation in both of these processes.  相似文献   

11.
To assess whether working memory contents can effectively bias visual selection even when they do not represent the current target in the attention task, we recorded the ERP activity from participants performing both a memory task and, in the retention period, a visual search task. In this task, a distracter matching the memory content could be presented on the same side (congruent trials) or on the opposite side (incongruent trials) relative to the target location (Experiment 1 and Experiment 2). On some trials, only the matching distracter (but no target) was presented (catch trials, Experiment 2). Results showed that the N2pc component was modulated by the presence and location of a matching distracter. We interpret these results as evidence that the involuntary control exerted by the irrelevant memory contents coexists with the strategic mechanism related to the search target, influencing attention selection with roughly equal power. In Experiment 3, we found that the modulation of the N2pc is not strictly related to the active maintenance of the memory-target features but can also be elicited by repetition priming. Overall, these findings suggest that, together with the physical properties of the stimuli presented in the visual field, irrelevant memory contents represent a powerful class of factors that lead to involuntary attentional control.  相似文献   

12.
Blind people must rely more than sighted people on auditory input in order to acquire information about the world. The present study was designed to test the hypothesis that blind people have better memory than sighted individuals for auditory verbal material and specifically to determine whether memory encoding and/or retrieval are improved in blind adults. An incidental memory paradigm was employed in which 11 congenitally blind people and 11 matched sighted controls first listened to 80 sentences which ended either with a semantically appropriate or inappropriate word. Immediately following, the recognition phase occurred, in which all sentence terminal words were presented again randomly intermixed with the same number of new words. Participants indicated whether or not they had heard the word in the initial study phase. Event-related brain potentials (ERPs) were recorded from 28 electrode positions during both the encoding and the retrieval phase. Blind participants' memory performance was superior to that of sighted controls. In addition, during the recognition phase, previously presented words elicited ERPs with larger positive amplitudes than new words, particularly over the right hemisphere. During the study phase, words that would subsequently be recognized elicited a more pronounced late positive potential than words that were not subsequently recognized. These effects were reliable in the congenitally blind participants but could only be obtained in the subgroup of sighted participants who had the highest memory performance. These results imply that blind people encode auditory verbal material more efficiently than matched sighted controls and that this in turn allows them to recognize these items with a higher probability.  相似文献   

13.
The present study examined the role of the prefrontal cortex in retrieval processing using functional magnetic resonance imaging in human subjects. Ten healthy subjects were scanned while they performed a task that required retrieval of specific aspects of visual information. In order to examine brain activity specifically associated with retrieval, we designed a task that had retrieval and control conditions that were perfectly matched in terms of depth of encoding, decision making and postretrieval monitoring and differed only in terms of whether retrieval was required. In the retrieval condition, based on an instructional cue, the subjects had to retrieve either the particular stimulus that was previously presented or its location. In the control condition, the cue did not instruct retrieval but shared with the instructional cues the function of alerting the subjects of the impending test phase. The comparison of activity between the retrieval and control conditions demonstrated a significant and selective increase in activity related to retrieval processes within the ventrolateral prefrontal cortical region, more specifically within area 47/12. These activity increases were bilateral but stronger in the right hemisphere. The present study by strictly controlling the level of encoding, postretrieval monitoring, and decision making has demonstrated a specific increase in the ventrolateral prefrontal region that could be clearly related to active retrieval processing, i.e. the active selection of particular stored visual representations.  相似文献   

14.
Hayes SM  Nadel L  Ryan L 《Hippocampus》2007,17(9):873-889
Previous research has investigated intentional retrieval of contextual information and contextual influences on object identification and word recognition, yet few studies have investigated context effects in episodic memory for objects. To address this issue, unique objects embedded in a visually rich scene or on a white background were presented to participants. At test, objects were presented either in the original scene or on a white background. A series of behavioral studies with young adults demonstrated a context shift decrement (CSD)-decreased recognition performance when context is changed between encoding and retrieval. The CSD was not attenuated by encoding or retrieval manipulations, suggesting that binding of object and context may be automatic. A final experiment explored the neural correlates of the CSD, using functional Magnetic Resonance Imaging. Parahippocampal cortex (PHC) activation (right greater than left) during incidental encoding was associated with subsequent memory of objects in the context shift condition. Greater activity in right PHC was also observed during successful recognition of objects previously presented in a scene. Finally, a subset of regions activated during scene encoding, such as bilateral PHC, was reactivated when the object was presented on a white background at retrieval. Although participants were not required to intentionally retrieve contextual information, the results suggest that PHC may reinstate visual context to mediate successful episodic memory retrieval. The CSD is attributed to automatic and obligatory binding of object and context. The results suggest that PHC is important not only for processing of scene information, but also plays a role in successful episodic memory encoding and retrieval. These findings are consistent with the view that spatial information is stored in the hippocampal complex, one of the central tenets of Multiple Trace Theory.  相似文献   

15.
These experiments explored the interactions remaining between the cerebral hemispheres in two split-brain macaques. The 'split' was earlier confirmed by showing that one hemisphere was incapable of identifying visual images seen by the other. The critical tests for residual interactions were intermingled with control trials in a continuous recognition task. These tests were of two kinds: 'parallel processing', to determine how simultaneous viewing by both hemispheres affected subsequent recognition by one of them alone; and 'conflict', where opposite responses were demanded from the two hemispheres, thus assessing the issue of metacontrol. Two types of stimuli were also employed: ART, in which each hemisphere saw essentially the same image; and BIPARTITE, in which images were entirely different for each hemisphere. Since, with either type of stimulus, performance was best when viewed by both hemispheres at both encoding and retrieval, 'parallel processing' was highly efficient. However, when both hemispheres viewed initially and only one was subsequently queried, performance was significantly worse than when each hemisphere acted alone on each occasion. It is thus reasoned that when both hemisphere view together, the resultant memory trace somehow reflects the bilaterality, a conclusion concordant with observations of Marcel on blindsight. Processing different images (BIPARTITE) was somewhat more disruptive in this regard than if the same image was viewed by each hemisphere. This was particularly true in the conflict situation, where for one hemisphere the item seen was NEW and for the other it was OLD. A response of 'OLD' was, at first, consistently rewarded. When this well-established protocol was changed, the hemispheres in each animal were gradually able to revise their joint behavior. This, together with the effect of disparate images, and the deficiency evoked when the animals were forced to recognize unilaterally an image first viewed under bilateral conditions, all manifest considerable, and complex, interaction between the hemispheres despite absence of the forebrain commissures. The superior colliculus seems a likely focal point for such interhemispheric effects.  相似文献   

16.
Converging evidence suggests that temporal representations of brief durations are derived subcortically. We tested split-brain patient JW in order to investigate whether these representations project bilaterally or unilaterally to cortex. Using visual stimuli to signal time intervals, JW was asked to compare the duration of a pair of standard stimuli that were presented bilaterally with a comparison stimulus that was presented to either the left or right visual field. Assuming the hand of response is controlled by the contralateral cerebral hemisphere, a hand by visual field interaction was predicted if the representation of stimulus duration was restricted to the cerebral hemisphere receiving the lateralized stimulus. However, we failed to observe this interaction for two different ranges of stimulus durations, both in the hundred (Experiment 2) to hundreds (Experiment 1) of milliseconds range. Instead, there was a consistent right hemisphere advantage in task performance. When the task then required a discrimination based on the physical size of the stimuli rather than their duration, an interaction between response hand and visual field was obtained (Experiment 3). Taken together, these results suggest that (1) even though the comparison stimulus was presented unilaterally, the representation of its duration was available to both cerebral hemispheres, and (2) a right hemisphere advantage in psychophysical tasks requiring the comparison of successive stimuli is observed for temporal and non-temporal judgments.  相似文献   

17.
Marsolek CJ  Hudson TE 《Laterality》1999,4(2):127-147
A greater tendency to complete single-completion word stems (e.g. "BEY") to form previously read whole words (e.g. "BEYOND") was found when test stems were presented in the same letter case as their previously encoded words, compared with the different letter case, but only when stems were presented directly to the right hemisphere (i.e. in the left visual field) and not when they were presented directly to the left hemisphere (i.e. in the right visual field). This finding with single-completion stems was robust (i.e. observed for both lowercase and uppercase stems) when the initial encoding task was perceptually demanding, but it was test-case dependent (i.e. observed for uppercase but not lowercase stems) when the initial encoding task was not perceptually demanding. Results and theory help to explain why letter-case-specific priming in right-hemisphere test presentations is typically test-case dependent when priming is measured using perceptual identification at test, but is consistently robust when priming is measured using multiple-completion word stems (e.g."BEA") at test. Demands from both the stimuli and tasks affect the relative contributions of abstract and specific subsystems to the processing of visual forms.  相似文献   

18.
We studied brain activity during retention and retrieval phases of two visual short-term memory (VSTM) experiments. Experiment 1 used a balanced memory array, with one color stimulus in each hemifield, followed by a retention interval and a central probe, at the fixation point that designated the target stimulus in memory about which to make a determination of orientation. Retrieval of information from VSTM was associated with an event-related lateralization (ERL) with a contralateral negativity relative to the visual field from which the probed stimulus was originally encoded, suggesting a lateralized organization of VSTM. The scalp distribution of the retrieval ERL was more anterior than what is usually associated with simple maintenance activity, which is consistent with the involvement of different brain structures for these distinct visual memory mechanisms. Experiment 2 was like Experiment 1, but used an unbalanced memory array consisting of one lateral color stimulus in a hemifield and one color stimulus on the vertical mid-line. This design enabled us to separate lateralized activity related to target retrieval from distractor processing. Target retrieval was found to generate a negative-going ERL at electrode sites found in Experiment 1, and suggested representations were retrieved from anterior cortical structures. Distractor processing elicited a positive-going ERL at posterior electrodes sites, which could be indicative of a return to baseline of retention activity for the discarded memory of the now-irrelevant stimulus, or an active inhibition mechanism mediating distractor suppression.  相似文献   

19.
A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.  相似文献   

20.
A suggestive hypothesis proposed that the lateral prefrontal cortex (LPFC) may be identified as the site of emotion-memory integration, since it was shown to be sensitive to the encoding and retrieval of emotional content. In the present research we explored the role of the dorsolateral prefrontal cortex (DLPFC) in memory retrieval of positive vs. negative emotional stimuli. This effect was analyzed by using an rTMS paradigm that induced a cortical activation of the left DLPFC. Subjects were required to perform a task consisting of two experimental phases: an encoding phase, where some lists composed by positive and negative emotional words were presented to the subjects; a retrieval phase, where the old stimuli and the new stimuli were presented for a recognition performance. The rTMS stimulation was provided during the retrieval phase over the left DLPFC. We found that the rTMS stimulation over this area affects the memory retrieval of positive emotional material, with higher memory efficiency (reduced RTs). This result suggested that left DLPFC activation promotes the memory retrieval of emotional information. Secondly, the valence model of emotional cue processing may explain decreasing of RTs, by pointing out the distinct role the left hemisphere has in positive emotional cue processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号