首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Genetic epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by heterogeneous phenotypes ranging from mild disorders such as febrile seizures to epileptic encephalopathies (EEs) such as Dravet syndrome (DS). Although DS often occurs with de novo SCN1A pathogenic variants, milder GEFS+ spectrum phenotypes are associated with inherited pathogenic variants. We identified seven cases with non‐EE GEFS+ phenotypes and de novo SCN1A pathogenic variants, including a monozygotic twin pair. Febrile seizures plus (FS+) occurred in six patients, five of whom had additional seizure types. The remaining case had childhood‐onset temporal lobe epilepsy without known febrile seizures. Although early development was normal in all individuals, three later had learning difficulties, and the twin girls had language impairment and working memory deficits. All cases had SCN1A missense pathogenic variants that were not found in either parent. One pathogenic variant had been reported previously in a case of DS, and the remainder were novel. Our finding of de novo pathogenic variants in mild phenotypes within the GEFS+ spectrum shows that mild GEFS+ is not always inherited. SCN1A screening should be considered in patients with GEFS+ phenotypes because identification of pathogenic variants will influence antiepileptic therapy, and prognostic and genetic counseling.  相似文献   

2.
Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) can both arise due to mutations of SCN1A, the gene encoding the alpha 1 pore-forming subunit of the sodium channel. GEFS+ refers to a familial epilepsy syndrome where at least two family members have phenotypes that fit within the GEFS+ spectrum. The GEFS+ spectrum comprises a range of mild to severe phenotypes varying from classical febrile seizures to Dravet syndrome. Dravet syndrome is a severe infantile onset epilepsy syndrome with multiple seizure types, developmental slowing and poor outcome. More than 70% of patients with Dravet syndrome have mutations of SCN1A; these include both truncation and missense mutations. In contrast, only 10% of GEFS+ families have SCN1A mutations and these comprise missense mutations. GEFS+ has also been associated with mutations of genes encoding the sodium channel beta 1 subunit, SCN1B, and the GABAA receptor gamma 2 subunit, GABRG2. The phenotypic heterogeneity that is characteristic of GEFS+ families is likely to be due to modifier genes. Interpretation of the significance of a SCN1A missense mutation requires a thorough understanding of the phenotypes in the GEFS+ spectrum whereas a de novo truncation mutation is likely to be associated with a severe phenotype. Early recognition of Dravet syndrome is important as aggressive control of seizures may improve developmental outcome.  相似文献   

3.
Generalised (genetic) epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with various phenotypes. The majority of individuals with GEFS+ have generalised seizure types, in addition to febrile seizures (FS) or febrile seizures plus (FS+), defined as either continued FS after 6 years of age or afebrile seizures following FS. A 27‐year‐old man with no history of FS/FS+ experienced intractable generalised convulsive seizures. The patient's father had a history of similar seizures during puberty and the patient's siblings had only FS. No individual in the family had both generalised seizures and FS/FS+, although GEFS+ might be considered to be present in the family. Analysis of SCN1A, a sodium channel gene, revealed a novel mutation (c.3250A>T [S1084C]) in the cytoplasmic loop 2 of SCN1A in both the patient and his father. Most previously reported SCN1A mutations in GEFS+ patients are located in the conserved homologous domains of SCN1A, whereas mutations in the cytoplasmic loops are very rare. SCN1A gene analysis is not commonly performed in subjects with generalised seizures without FS. SCN1A mutation may be a clinically‐useful genetic marker in order to distinguish GEFS+ patients from those with classic idiopathic generalised epilepsy, even if they present an atypical clinical picture.  相似文献   

4.
Mutations in a number of genes encoding voltage‐gated sodium channels cause a variety of epilepsy syndromes in humans, including genetic (generalized) epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS, severe myoclonic epilepsy of infancy). Most of these mutations are in the SCN1A gene, and all are dominantly inherited. Most of the mutations that cause DS result in loss of function, whereas all of the known mutations that cause GEFS+ are missense, presumably altering channel activity. Family members with the same GEFS+ mutation often display a wide range of seizure types and severities, and at least part of this variability likely results from variation in other genes. Many different biophysical effects of SCN1A‐GEFS+ mutations have been observed in heterologous expression systems, consistent with both gain and loss of channel activity. However, results from mouse models suggest that the primary effect of both GEFS+ and DS mutations is to decrease the activity of GABAergic inhibitory neurons. Decreased activity of the inhibitory circuitry is thus likely to be a major factor contributing to seizure generation in patients with GEFS+ and DS, and may be a general consequence of SCN1A mutations.  相似文献   

5.
Mutations in sodium channel genes are highly associated with epilepsy. Mutation of SCN1A, the gene encoding the voltage gated sodium channel (VGSC) alpha subunit type 1 (Nav1.1), causes Dravet syndrome spectrum disorders. Mutations in SCN2A have been identified in patients with benign familial neonatal‐infantile epilepsy (BFNIE), generalised epilepsy with febrile seizures plus (GEFS+), and a small number of reported cases of other infantile‐onset severe intractable epilepsy. Here, we report three patients with infantile‐onset severe intractable epilepsy found to have de novo mutations in SCN2A. While a causal role for these mutations cannot be directly established, these findings contribute to growing evidence that mutation of SCN2A is associated with a range of epilepsy phenotypes including severe infantile‐onset epilepsy.  相似文献   

6.
Purpose: Generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy in infancy (SMEI) are associated with sodium channel α‐subunit type‐1 gene (SCN1A) mutations. Febrile seizures and partial seizures occur in both GEFS+ and SMEI; sporadic onset and seizure aggravation by antiepileptic drugs (AEDs) are features of SMEI. We thus searched gene mutations in isolated cases of partial epilepsy with antecedent FS (PEFS+) that showed seizure aggravations by AEDs. Methods: Genomic DNA from four patients was screened for mutations in SCN1A, SCN2A, SCN1B, and GABRG2 using denaturing high‐performance liquid chromatography (dHPLC) and sequencing. Whole‐cell patch clamp analysis was used to characterize biophysical properties of two newly defined mutants of Nav1.1 in tsA201 cells. Results: Two heterozygous de novo mutations of SCN1A (R946H and F1765L) were detected, which were proven to cause loss of function of Nav1.1. When the functional defects of mutants reported previously are compared, it is found that all mutants from PEFS+ have features of loss of function, whereas GEFS+ shows mild dysfunction excluding loss of function, coincident with mild clinical manifestations. PEFS+ is similar to SMEI clinically with possible AED‐induced seizure aggravation and biophysiologically with features of loss of function, and different from SMEI by missense mutation without changes in hydrophobicity or polarity of the residues. Conclusions: Isolated milder PEFS+ may associate with SCN1A mutations and loss of function of Nav1.1, which may be the basis of seizure aggravation by sodium channel–blocking AEDs. This study characterized phenotypes biologically, which may be helpful in understanding the pathophysiologic basis, and further in management of the disease.  相似文献   

7.
Aims. Epilepsy with auditory features (EAF) is a focal epilepsy syndrome characterized by prominent auditory ictal manifestations. Two main genes, LGI1 and RELN, have been implicated in EAF, but the genetic aetiology remains unknown in half of families and most sporadic cases. We previously described a pathogenic SCN1A missense variant (p.Thr956Met) segregating in a large family in which the proband and her affected daughter had EAF, thus satisfying the minimum requirement for diagnosis of autosomal dominant EAF (ADEAF). However, the remaining eight affected family members had clinical manifestations typically found in families with genetic epilepsy with febrile seizures plus (GEFS+). We aimed to investigate the role/impact of SCN1A mutations in EAF. Methods. We detailed the phenotype of this family and report on SCN1A screening in a cohort of 29 familial and 52 sporadic LGI1 variant‐negative EAF patients. Results. We identified two possibly pathogenic missense variants (p.Tyr790Phe and p.Thr140Ile) in sporadic patients (3.8%) showing typical EAF and no antecedent febrile seizures. Both p.Thr956Met and p.Tyr790Phe were previously described in unrelated patients with epilepsies within the GEFS+ spectrum. Conclusion. SCN1A mutations may be involved in EAF within the GEFS+ spectrum, however, the role of SCN1A in EAF without features that lead to a suspicion of underlying GEFS+ remains unclear and should be elucidated in future studies.  相似文献   

8.
This report is a practical reference guide for genetic testing of SCN1A, the gene encoding the α1 subunit of neuronal voltage‐gated sodium channels (protein name: Nav1.1). Mutations in this gene are frequently found in Dravet syndrome (DS), and are sometimes found in genetic epilepsy with febrile seizures plus (GEFS+), migrating partial seizures of infancy (MPSI), other infantile epileptic encephalopathies, and rarely in infantile spasms. Recommendations for testing: (1) Testing is particularly useful for people with suspected DS and sometimes in other early onset infantile epileptic encephalopathies such as MPSI because genetic confirmation of the clinical diagnosis may allow optimization of antiepileptic therapy with the potential to improve seizure control and developmental outcome. In addition, a molecular diagnosis may prevent the need for unnecessary investigations, as well as inform genetic counseling. (2) SCN1A testing should be considered in people with possible DS where the typical initial presentation is of a developmentally normal infant presenting with recurrent, febrile or afebrile prolonged, hemiclonic seizures or generalized status epilepticus. After age 2, the clinical diagnosis of DS becomes more obvious, with the classical evolution of other seizure types and developmental slowing. (3) In contrast to DS, the clinical utility of SCN1A testing for GEFS+ remains questionable. (4) The test is not recommended for children with phenotypes that are not clearly associated with SCN1A mutations such as those characterized by abnormal development or neurologic deficits apparent at birth or structural abnormalities of the brain. Interpreting test results: (1) Mutational testing of SCN1A involves both conventional DNA sequencing of the coding regions and analyses to detect genomic rearrangements within the relevant chromosomal region: 2q24. Interpretation of the test results must always be done in the context of the electroclinical syndrome and often requires the assistance of a medical geneticist, since many genomic variations are possible and it is essential to differentiate benign polymorphisms from pathogenic mutations. (2) Missense variants may have no apparent effect on the phenotype (benign polymorphisms) or may represent mutations underlying DS, MPSI, GEFS+, and related syndromes and can provide a challenge in interpretation. (3) Conventional methods do not detect variations in introns or promoter or regulatory regions; therefore, a negative test does not exclude a pathogenic role of SCN1A in a specific phenotype. (4) It is important to note that a negative test does not rule out the clinical diagnosis of DS or other conditions because genes other than SCN1A may be involved. Obtaining written informed consent and genetic counseling should be considered prior to molecular testing, depending on the clinical situation and local regulations.  相似文献   

9.
Till now truncation mutations of voltage-gated sodium channel alpha subunit type I (SCN1A) gene were mostly found in severe myoclonic epilepsy of infancy (SMEI) patients. In this research we first identified two novel de novo truncation mutations (S662X and M145fx148) in two patients whose phenotypes were quite milder compared with SMEI patients. One patient was diagnosed as generalized epilepsy with febrile seizures plus (GEFS+); the other had focal seizures. Both patients had good response to anti-epileptic therapy (valproate or the combination of valproate and topiramate). Our findings extended the utility of the SCN1A gene testing and further confirmed the complex relationship between genotype and phenotype of SCN1A mutations. Further work is needed to optimize the protocol for specific genetic testing in children with epilepsy.  相似文献   

10.
PURPOSE: SCN1A is the most clinically relevant epilepsy gene, most mutations lead to severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+). We studied 132 patients with epilepsy syndromes with seizures precipitated by fever, and performed phenotype-genotype correlations with SCN1A alterations. METHODS: We included patients with SMEI including borderline SMEI (SMEB), GEFS+, febrile seizures (FS), or other seizure types precipitated by fever. We performed a clinical and genetic study focusing on SCN1A, using dHPLC, gene sequencing, and MLPA to detect genomic deletions/duplications on SMEI/SMEB patients. RESULTS: We classified patients as: SMEI/SMEB = 55; GEFS+= 26; and other phenotypes = 51. SCN1A analysis by dHPLC/sequencing revealed 40 mutations in 37 SMEI/SMEB (67%) and 3 GEFS+ (11.5%) probands. MLPA showed genomic deletions in 2 of 18 SMEI/SMEB. Most mutations were de novo (82%). SMEB patients carrying mutations (8) were more likely to have missense mutations (62.5%), conversely SMEI patients (31) had more truncating, splice site or genomic alterations (64.5%). SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS compared to those with missense mutations and without mutations (p = 0.00007, ANOVA test). None of the remaining patients with seizures precipitated by fever carried SCN1A mutations. CONCLUSION: We obtained a frequency of 71%SCN1A abnormalities in SMEI/SMEB and of 11.5% in GEFS+ probands. MLPA complements DNA sequencing of SCN1A increasing the mutation detection rate. SMEI/SMEB with truncating, splice site or genomic alterations had a significantly earlier age of onset of FS. This study confirms the high sensitivity of SCN1A for SMEI/SMEB phenotypes.  相似文献   

11.
Purpose: We evaluated the ability of the ketogenic diet (KD) to improve thresholds to flurothyl‐induced seizures in two mouse lines with Scn1a mutations: one that models Dravet syndrome (DS) and another that models genetic (generalized) epilepsy with febrile seizures plus (GEFS+). Methods: At postnatal day 21, mouse models of DS and GEFS+ were fasted for 12–14 h and then placed on either a 6:1 (fats to proteins and carbohydrates) KD or a standard diet (SD) for 2 weeks. At the end of the 2‐week period, we measured thresholds to seizures induced by the chemiconvulsant flurothyl. Body weight, β‐hydroxybutyrate (BHB) levels, and glucose levels were also recorded every 2 days over a 2‐week period in separate cohorts of mutant and wild‐type mice that were either on the KD or the SD. Key Findings: Mice on the KD gained less weight and exhibited significantly higher BHB levels compared to mice on the SD. It is notable that thresholds to flurothyl‐induced seizures were restored to more normal levels in both mouse lines after 2 weeks on the KD. Significance: These results indicate that the KD may be an effective treatment for refractory patients with SCN1A mutations. The availability of mouse models of DS and GEFS+ also provides an opportunity to better understand the mechanism of action of the KD, which may facilitate the development of improved treatments.  相似文献   

12.
SCN1A, encoding the alpha 1 subunit of the sodium channel, is associated with several epilepsy syndromes and a range of other diseases. SCN1A represents the archetypal channelopathy associated with a wide phenotypic spectrum of epilepsies ranging from genetic epilepsy with febrile seizures plus (GEFS+), to developmental and epileptic encephalopathies (DEEs). SCN1A disorders also result in other diseases such as hemiplegic migraine and autism spectrum disorder (ASD). Dravet syndrome (DS) is the prototypic DEE with an early onset of febrile status epilepticus, hemiclonic or generalized tonic‐clonic seizures, and later onset of additional seizure types. Electroencephalography (EEG) and magnetic resonance imaging (MRI) are normal at onset. Development is normal in the first year of life but plateaus rapidly, with most patients ultimately having intellectual disability. Epilepsy is drug‐resistant and necessitates polytherapy. Most pathogenic variants occur de novo in the affected child, but they are inherited from mosaic affected or unaffected parents in rare cases. The molecular finding of haploinsufficiency is consistent with a loss‐of‐function defect in cells and animal models. Although seizures are the most commonly reported symptom in DS, many additional issues critically affect patients’ cognitive and behavioral functioning. Hemiplegic migraine (HM) is a rare form of migraine with aura, characterized by the emergence of hemiparesis as part of the aura phase. All SCN1A mutations reported in sporadic/familial HM3 are missense mutations. Most of the experimental results show that they cause a gain of function of NaV1.1 as opposed to the loss of function of the epileptogenic NaV1.1 mutations. SCN1A and SCN2A pathogenic variants have been identified in genetic studies of cohorts of patients with ASD. In addition, ASD features are often reported in patients with Dravet syndrome and other DEEs.  相似文献   

13.
Febrile seizures (FS) represent the most common form of childhood seizures. They affect 2–5% of infants in the Caucasian population and are even more common in the Japanese population, affecting 6–9% of infants. Some familial FS are associated with a wide variety of afebrile seizures. Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with a spectrum of phenotypes including FS, atypical FS (FS+) and afebrile seizures. A significant genetic component exists for susceptibility to FS and GEFS+: extensive genetic studies have shown that at least nine loci are responsible for FS. Furthermore, mutations in the voltage-gated sodium channel subunit genes (SCN1A, SCN2A and SCN1B) and the GABAA receptor subunit genes (GABRG2 and GABRD) have been identified in GEFS+. However, the causative genes have not been identified in most patients with FS or GEFS+. Common forms of FS are genetically complex disorders believed to be influenced by variations in several susceptibility genes. Recently, several association studies on FS have been reported, but the results vary among different groups and no consistent or convincing FS susceptibility gene has emerged. Herein, we review the genetic data reported in FS, including the linkage analysis, association studies, and genetic abnormalities found in the FS-related disorders such as GEFS+ and severe myoclonic epilepsy in infancy.  相似文献   

14.
PURPOSE: We describe seven Italian families with generalized epilepsy with febrile seizures plus (GEFS+), in which mutations of SCN1A, SCN1B, and GABRG2 genes were excluded and compare their clinical spectrum with that of previously reported GEFS+ with known mutations. METHODS: We performed a clinical study of seven families (167 individuals). The molecular study included analysis of polymerase chain reaction (PCR) fragments of SCN1A and SCN1B exons by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing of GABRG2 in all families. We excluded SCN1A, SCN1B, and GABRG2 genes with linkage analysis in a large pedigree and directly sequenced SCN2A in a family with neonatal-infantile seizures onset. We compared the epilepsy phenotypes observed in our families with those of GEFS+ families harboring mutations of SCN1A, SCN1B, and GABRG2 and estimated the percentage of mutations of these genes among GEFS+ cases by reviewing all published studies. RESULTS: Inheritance was autosomal dominant with 69% penetrance. Forty-one individuals had epilepsy: 29 had a phenotype consistent with GEFS+; seven had idiopathic generalized epilepsy (IGE); in three, the epilepsy type could not be classified; and two were considered phenocopies. Clinical phenotypes included FS+ (29.2%), FS (29.2%), IGE (18.2%), FS+ with focal seizures (13%) or absence seizures (2.6%), and FS with absence seizures (2.6%). Molecular study of SCN1A, SCN2A, SCN1B, and GABRG2 did not reveal any mutation. Results of our study and literature review indicate that mutations of SCN1A, SCN2A, SCN1B, and GABRG2 in patients with GEFS+ are rare. CONCLUSIONS: The most frequently observed phenotypes matched those reported in families with mutations of the SCN1A, SCN1B, and GABRG2 genes. IGE and GEFS+ may overlap in some families, suggesting a shared genetic mechanism. The observation that 13% of affected individuals had focal epilepsy confirms previously reported rates and should prompt a reformulation of the "GEFS+" concept to include focal epileptogenesis.  相似文献   

15.
Generalized epilepsy with febrile seizures plus (GEFS(+)) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS(+) and FS patients were screened for mutations in the sodium channel beta-subunits SCN1B and SCN2B, and the second GEFS(+) family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS(+) phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS(+), and the authors found no evidence to implicate SCN2B in this syndrome.  相似文献   

16.
Purpose: Dravet syndrome (DS) is an aggressive epileptic encephalopathy. Pharmacoresistant seizures of several types plague most patients with DS throughout their lives. Gait difficulties are a common, but inconsistent finding. The majority of cases are caused by mutations in the SCN1A gene, but little information is available about how particular mutations influence the adult phenotype. The purpose of this study is to correlate different types of SCN1A mutations and (1) seizure control, (2) occurrence of convulsive status epilepticus (cSE), and (3) the presence of crouch gait in adult patients. Methods: In a cohort of 10 adult patients with DS caused by SCN1A mutations, we investigated seizure frequency, history of cSE, and gait. All patients were identified in the epilepsy clinic between 2009 and 2011. SCN1A mutations were divided into four different groups based on location or effect of the mutation. Retrospective chart review and recent physical examination were completed in all cases. Key Findings: All patients had a pathogenic mutation in the SCN1A gene. Four SCN1A mutations have not been described previously. Greater than 90% seizure reduction was observed (compared to childhood frequency) in six of seven patients with missense mutations in the pore‐forming region (PFR) of the Nav1.1 protein (group A) and nonsense mutations (group B). One patient with a splice‐site mutation (group C) and another with a mutation outside the PFR (group D) became free of all types of seizures. cSE after the age of 19 years was observed in only one patient. Crouch gait, without spasticity, is identified as an element of the adult DS phenotype. However, only one half of our adult DS cohort demonstrated crouch gait. This feature was observed in five of seven patients from groups A and B. Significance: This study shows that seizure control improves and cSE become less frequent in DS as patients age, independent of their SCN1A mutation type. Complete seizure freedom was seen in two patients (groups C and D). Finally, this study shows that in DS, crouch gait can be observed in up to 50% of adults with SCN1A mutation. Although no definite statistical correlations could be made due to the small number of patients, it is interesting to note that crouch gait was observed only in those patients with nonsense mutations or mutations in the PFR. Future studies with larger cohorts will be required to formally assess an association of gait abnormalities with particular SCN1A mutations.  相似文献   

17.
Evidence that febrile seizures have a strong genetic predisposition has been well documented. In families of probands with multiple febrile convulsions, an autosomal dominant inheritance with reduced penetrance is suspected. Four candidate loci for febrile seizures have been suggested to date; FEB1 on 8q13-q21, FEB2 on 19p, FEB3 on 2q23-q24, and FEB4 on 5q14-15. A missense mutation was identified in the voltage-gated sodium (Na(+))-channel beta 1 subunit gene, SCN1B at chromosome 19p13.1 in generalized epilepsy with the febrile seizures plus type 1 (GEFS+1) family. Several missense mutations of the (Na(+))-channel alpha 1 subunit (Nav1.1) gene, SCN1A were also identified in GEFS+2 families at chromosome 2q23-q24.3. The aim of this report is precisely to describe the phenotypes of Japanese patients with novel SCN1A mutations and to reevaluate the entity of GEFS+. Four family members over three generations and one isolated (phenotypically sporadic) case with SCN1A mutations were clinically investigated. The common seizure type in these patients was febrile and afebrile generalized tonic-clonic seizures (FS+). In addition to FS+, partial epilepsy phenotypes were suspected in all affected family members and electroencephalographically confirmed in three patients of two families. GEFS+ is genetically and clinically heterogeneous, and associated with generalized epilepsy and partial epilepsy as well. The spectrum of GEFS+ should be expanded to include partial epilepsies and better to be termed autosomal dominant epilepsy with febrile seizures plus (ADEFS+).  相似文献   

18.
Epilepsy is a phenotypically and genetically highly heterogeneous disorder with >200 genes linked to inherited forms of the disease. To identify the underlying genetic cause in a patient with intractable seizures, optic atrophy, severe intellectual disability (ID), brain abnormalities, and muscular hypotonia, we performed exome sequencing in a 5‐year‐old girl and her unaffected parents. In the patient, we detected a novel, de novo missense mutation in the SCN2A (c.5645G>T; p.R1882L) gene encoding the αII‐subunit of the voltage‐gated sodium channel Nav1.2. A literature review revealed 33 different SCN2A mutations in 14 families with benign forms of epilepsy and in 21 cases with severe phenotypes. Although almost all benign mutations were inherited, the majority of severe mutations occurred de novo. Of interest, de novo SCN2A mutations have also been reported in five patients without seizures but with ID (n = 3) and/or autism (n = 3). In the present study, we successfully used exome sequencing to detect a de novo mutation in a genetically heterogeneous disorder with epilepsy and ID. Using this approach, we expand the phenotypic spectrum of SCN2A mutations. Our own and literature data indicate that SCN2A‐linked severe phenotypes are more likely to be caused by de novo mutations. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here .  相似文献   

19.
Epileptic encephalopathies are highly heterogeneous and phenotypical disorders with different underlying genetic defects. Mutations in the SCN2A gene cause different epilepsy syndromes, including epilepsy of infancy with migrating focal seizures, Ohtahara syndrome, and West syndrome. We utilized a targeted next generation sequencing (NGS) approach on a girl with early-onset seizures and Rett-like features, including autistic behavior, limited hand function with chorea, and profound intellectual disability, to identify novel missense mutation (c.1270G>A; p.V424M) in the SCN2A gene, which encodes the αII-subunit of the voltage-gated Na+ channel (Nav1.2). The identified SCN2A mutation responsible for the development of the disease is confirmed to be de novo for the proband. Our findings broaden the clinical spectrum of SCN2A mutations, which resembles clinical phenotypes of SCN1A mutations by manifesting as fever sensitive seizures, and highlights that SCN2A mutations are an important cause of early-onset epileptic encephalopathies with movement disorders. In addition, the use of levetiracetam to treat SCN2A epileptic encephalopathy, when Na+ channel-blocking anticonvulsants are ineffective, is also recommended.  相似文献   

20.
Severe myoclonic epilepsy in infancy (SMEI), severe idiopathic generalized epilepsy of infancy (SIGEI) with generalized tonic clonic seizures (GTCS), and myoclonic astatic epilepsy (MAE) may show semiological overlaps. In GEFS+ families, all three phenotypes were found associated with mutations in the SCN1A gene. We analyzed the SCN1A gene in 20 patients with non-familial myoclonic astatic epilepsy -- including 12 probands of the original cohort used by Doose et al. in 1970 to delineate MAE. In addition, 18 patients with sporadic SIGEI -- mostly without myoclonic-astatic seizures -- were analyzed. Novel SCN1A mutations were found in 3 individuals. A frame shift resulting in an early premature stop codon in a now 35-year-old woman with a borderline phenotype of MAE and SIGEI (L433fsX449) was identified. A splice site variant (IVS18 + 5 G --> C) and a missense mutation in the conserved pore region (40736 C --> A; R946 S) were detected each in a child with SIGEI. We conclude that, independent of precise syndromic delineation, myoclonic-astatic seizures are not predictive of SCN1A mutations in sporadic myoclonic epilepsies of infancy and early childhood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号