首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Radionuclide bone scanning (RNB) is considered to be the most practical screening technique for assessing the entire skeleton for skeletal metastases. However, RNB has been shown to be of lower sensitivity than MRI and CT in detecting osteolytic metastases. A prospective study was designed to evaluate the accuracy of planar RNB versus tomographic bone imaging with 18F-labeled NaF and PET (18F PET) in detecting osteolytic and osteoblastic metastases and its dependency on their anatomic localization. METHODS: Forty-four patients with known prostate, lung or thyroid carcinoma were examined with both planar RNB and 18F PET. A panel of reference methods including MRI of the spine, 1311 scintigraphy, conventional radiography and spiral CT was used as the gold standard. RNB and 18F PET were compared by a lesion-by-lesion analysis using a five-point score for receiver operating characteristic (ROC) curve analysis. RESULTS: 18F PET showed 96 metastases (67 of prostate carcinoma and 29 of lung or thyroid cancer), whereas RNB revealed 46 metastases (33 of prostate carcinoma and 13 of lung or thyroid cancer). All lesions found with RNB were also detected with 18F PET. Compared with 18F PET and the reference methods, RNB had a sensitivity of 82.8% in detecting malignant and benign osseous lesions in the skull, thorax and extremities and a sensitivity of 40% in the spine and pelvis. The area under the ROC curve was 0.99 for 18F PET and 0.64 for RNB. CONCLUSION: 18F PET is more sensitive than RNB in detecting osseous lesions. With RNB, sensitivity in detecting osseous metastases is highly dependent on anatomic localization of these lesions, whereas detection rates of osteoblastic and osteolytic metastases are similar. Higher detection rates and more accurate differentiation between benign and malignant lesions with 18F PET suggest the use of 18F PET when possible.  相似文献   

2.
Distant metastases from breast cancer most frequently occur in the skeleton. Although 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET), with or without computed tomography (CT), is superior to bone scintigraphy for the detection of osteolytic bone metastases, it has been reported that sclerotic bone metastases frequently show no or only a low degree of FDG uptake on PET and PET/CT. Since both lytic and sclerotic metastases can occur in breast cancer patients, bone scintigraphy may remain of additional value in these patients. In this case series, we describe four breast cancer patients in whom FDG PET/CT has clearly visualized sclerotic bone metastases because of increased FDG uptake. Not so much the type of metastasis (sclerotic or lytic), but possibly the characteristics of the primary tumor or treatments prior to the FDG PET/CT scan might influence the degree of FDG uptake of bone metastases. The ability to detect sclerotic bone metastases based on increased FDG uptake supports the use of FDG PET/CT as a staging procedure in breast cancer patients, but knowledge of factors determining the visibility of bone metastases with FDG PET/CT is crucial.  相似文献   

3.
The presence of distant metastases is the main prognostic factor in patients with breast cancer and has a significant influence in the choice of therapy. Therefore, chest X-ray, bone scintigraphy and ultrasound of the abdomen are performed to detect distant metastases at diagnosis and follow-up. Fluorodeoxyglucose positron emission tomography (FDG PET) has been shown to provide sensitive detection of primary tumour and metastases for many tumour entities, but little information is available about the diagnostic value for breast cancer patients. This study retrospectively compared FDG PET for detection of metastatic disease with chest X-ray, bone scintigraphy and ultrasound of the abdomen, referred to as "conventional diagnostic procedures" (CDPs), in 50 breast cancer patients. Imaging procedures were analysed in a blinded fashion with the results classified as "no evidence of metastases", "equivocal" and "evidence of metastases". Clinical follow-up and the results of other imaging modalities including computed tomography and magnetic resonance imaging were used to determine if metastases were present. FDG PET identified metastatic disease with a sensitivity and specificity of 86% and 90% as compared to 36% and 95% for CDPs, respectively. Regarding "equivocal" and "evidence of metastases" as positive, the sensitivity of CDPs increased to 57% with a corresponding specificity of 81%, whereas sensitivity and specificity of FDG PET remained unchanged. Regarding different localities of metastases the sensitivity of FDG PET was superior in the detection of pulmonary metastases and especially of lymph node metastases of the mediastinum in comparison to chest X-ray, whereas the sensitivity of FDG PET in the detection of bone and liver metastases was of the same magnitude as compared with bone scintigraphy and ultrasound of the abdomen.  相似文献   

4.
OBJECTIVE: Bone is one of the most common sites of metastasis in breast cancer patients. Although bone scintigraphy is widely used to detect metastatic breast cancer, the usefulness of 18FDG-PET for detecting bone metastasis has not been clearly evaluated. The purpose of this study was to compare the diagnostic accuracy of 18FDG-PET with bone scintigraphy in detecting bone metastasis in breast cancer patients. METHODS: Forty-four women aged 35 to 81 years (mean, 56 years) with breast cancer were examined in this study. Both 18FDG-PET and bone scintigraphy were performed for each patient with 0-69 day intervals (mean, 11.5 days). The results of each image interpretation were compared retrospectively. Whole-body bones were classified into 9 anatomical regions. Metastases were confirmed at 45/187 regions in 14 patients by bone biopsy or clinical follow-up including other imaging techniques for a period of at least 6 months afterwards. RESULTS: On a region basis, the sensitivity, specificity, and accuracy of 18FDG-PET were 84%, 99% and 95%, respectively. Although these results were comparable to those of bone scintigraphy, the combination of 18FDG-PET and bone scintigraphy improved the sensitivity (98%) and accuracy (97%) of detection. False negative lesions of bone scintigraphy were mostly bone marrow metastases and those of 18FDG-PET were mostly osteoblastic metastases. 18FDG-PET was superior to bone scintigraphy in the detection of osteolytic lesions (92% vs. 73%), but inferior in the detection of osteoblastic lesions (74% vs. 95%). CONCLUSIONS: This study shows that 18FDG-PET tends to be superior to bone scintigraphy in the detection of osteolytic lesions, but inferior in the detection of osteoblastic lesions. 18FDG-PET should play a complementary role in detecting bone metastasis with bone scintigraphy.  相似文献   

5.
Positron emission tomography (PET) is able to demonstrate changes in the metabolism of malignant tumors and metastases before they become visible on anatomical imaging. The skeleton is the most common site of distant metastases of breast cancer. There is convincing evidence that FDG-PET is more sensitive in detecting osteolytic metastases than bone scintigraphy, whereas bone scintigraphy is more sensitive in detecting osteoblastic metastases. Because both types of metastases can occur in breast cancer, bone scintigraphy and FDG-PET should be considered as complementary and can currently be regarded as standard of care for staging in breast cancer patients, whereas the decision to use F-18 fluoride PET should be made individually for each patient, depending on the expected change of therapy management.  相似文献   

6.
18F-Fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) has been evaluated in breast cancer for the characterisation of primary tumours, lymph node staging and the follow-up of patients after surgery, chemotherapy and/or external radiotherapy. In contrast to both the low sensitivity and moderate specificity of FDG PET in the initial detection and characterisation of breast cancer and the low lesion-based sensitivity for lymph node staging, the results from use of FDG PET in re-staging breast cancer patients are very promising. A major advantage of FDG PET imaging compared with conventional imaging is that it screens the entire patient for local recurrence, lymph node metastases and distant metastases during a single whole-body examination using a single injection of activity, with a reported average sensitivity and specificity of 96% and 77%, respectively. In most studies the sensitivity of FDG PET is higher than that of a combination of conventional imaging methods. Limitations of FDG PET in the follow-up of breast cancer patients include the relatively low detection rate of bone metastases, especially in case of the sclerotic subtype, and the relatively high rate of false positive results. The rather low specificity of FDG PET can be improved/increased by utilising combined anatomical-molecular imaging techniques, such as a PET/CT tomograph. First results using PET/CT imaging in the follow-up of breast cancer patients demonstrate increased specificity compared with FDG PET alone. Both imaging modalities, however, offer to detect recurrent and metastatic breast cancer disease at an early stage and thus continue to demonstrate the efficacy of molecular imaging in patient management, despite the limited therapeutic options in recurrent and metastatic breast cancer.  相似文献   

7.
Seventeen patients with advanced breast cancer were imaged with a specially collimated gamma camera to study tumor uptake of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) before and during therapy. Fourteen patients (82%) showed increased FDG accumulation in metastatic tumors, 6/8 (75%) of axillary, supra or infraclavicular metastatic lymph nodes were detectable. In one of these cases, FDG imaging was the first method to identify axillary metastasis causing nerve compression. Also, pulmonary and liver metastases could be imaged with FDG; both in two patients. The intra individual variability in uptake was considerable in bone metastases, and some lesions remained FDG negative: 99mTc-DPD was superior in detecting bone disease. Bone metastases of the osteolytic or mixed type were better visualized than sclerotic ones. Ten patients were reimaged later to assess the effect of therapy on FDG uptake. Increased uptake was associated with clinical progression, while unchanged or diminished uptake did not predict the course of disease as reliably. This study indicates that FDG can be used to image breast cancer metastases. FDG may be valuable in monitoring treatment response, but positron emission tomography (PET) would probably be more appropriate than planar imaging for this purpose.  相似文献   

8.
Purpose To assess 18F-fluorodeoxyglucose (FDG) uptake in bone metastases in patients with and without previous treatment, and compare positive positron emission tomography (PET) with osteolytic or osteoblastic changes on computed tomography (CT).Methods One hundred and thirty-one FDG-PET/CT studies were reviewed for bone metastases. A total of 294 lesions were found in 76 patients, 81 in untreated patients and 213 in previously treated patients. PET was assessed for abnormal FDG uptake localised by PET/CT to the skeleton. CT was evaluated for bone metastases and for blastic or lytic pattern. The relationship between the presence and pattern of bone metastases on PET and CT, and prior treatment was statistically analysed using the chi-square test.Results PET identified 174 (59%) metastases, while CT detected 280 (95%). FDG-avid metastases included 74/81 (91%) untreated and 100/213 (47%) treated lesions (p<0.001). On CT there were 76/81 (94%) untreated and 204/213 (96%) treated metastases (p NS). In untreated patients, 85% of lesions were seen on both PET and CT (26 blastic, 43 lytic). In treated patients, 53% of lesions were seen only on CT (95 blastic, 18 lytic). Of the osteoblastic metastases, 65/174 (37%) were PET positive and 98/120 (82%), PET negative (p<0.001).Conclusion The results of the present study indicate that when imaging bone metastases, prior treatment can alter the relationship between PET and CT findings. Most untreated bone metastases are PET positive and lytic on CT, while in previously treated patients most lesions are PET negative and blastic on CT. PET and CT therefore appear to be complementary in the assessment of bone metastases.  相似文献   

9.
Seventeen patients with advanced breast cancer were imaged with a specially collimated gamma camera to study tumor uptake of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) before and during therapy. Fourteen patients (82%) showed increased FDG accumulation in metastatic tumors, 6/8 (75%) of axillary, supra or infraclavicular metastatic lymph nodes were detectable. In one of these cases, FDG imaging was the first method to identify axillary metastasis causing nerve compression. Also, pulmonary and liver metastases could be imaged with FDG; both in two patients. The intra individual variability in uptake was considerable in bone metastases, and some lesions remained FDG negative:99mTc-DPD was superior in detecting bone disease. Bone metastases of the osteolytic or mixed type were better visualized than sclerotic ones. Ten patients were reimaged later to assess the effect of therapy on FDG uptake. Increased uptake was associated with clinical progression, while unchanged or diminished uptake did not predict the course of disease as reliably. This study indicates that FDG can be used to image breast cancer metastases. FDG may be valuable in monitoring treatment response, but positron emission tomography (PET) would probably be more appropriate than planar imaging for this purpose.  相似文献   

10.

Background

This study aimed to compare the detection of bone metastases from breast cancer on F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and bone scintigraphy (BS). An explorative search for factors influencing the sensitivity or uptake of BS and FDG-PET was also performed.

Methods

Eighty-eight patients with bone metastases from breast cancer were eligible for this study. Histological confirmation of bone metastases was obtained in 31 patients. The bone metastases were visually classified into four types based on their computed tomography (CT) appearance: osteoblastic, osteolytic, mixed, and negative. The sensitivity of BS and FDG-PET were obtained regarding CT type, adjuvant therapy, and the primary tumor characteristics. The FDG maximum standardized uptake value (SUVmax) was analyzed.

Results

The sensitivities of the three modalities (CT, BS, and FDG-PET) were 77, 89, and 94%, respectively. The sensitivity of FDG-PET for the osteoblastic type (69%) was significantly lower than that for the other types (P < 0.001), and the sensitivity of BS for the negative type (70%) was significantly lower than that for the others. Regarding tumor characteristics, the sensitivity of FDG-PET significantly differed between nuclear grade (NG)1 and NG2–3 (P = 0.032). The SUVmax of the osteoblastic type was significantly lower than that of the other types (P = 0.009). The SUVmax of NG1 was also significantly lower than that of NG2–3 (P = 0.011). No significant difference in FDG uptake (SUVmax) was detected between different histological types.

Conclusion

Although FDG-PET is superior to BS for the detection of bone metastases from breast cancer, this technique has limitations in depicting osteoblastic bone metastases and NG1.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号