首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 81 毫秒
1.
目的 对现有的红骨髓剂量模拟计算方法进行比较和分析.为确定更为合理的计算方法提供依据.方法 借助MCNPX蒙特卡罗模拟软件,模拟了能量20 keV~10 MeV的γ光子源,对Rensselaer理工学院(RPI)体素人体模型进行前后(AP)全身均匀照射,分别采用直接能量沉积法、剂量响应函数法(DRF)、King-Spiers因子法和质能吸收系数法(MEAC),进行红骨髓剂量的模拟计算.结果 在入射γ光子能量低于100 keV时,直接能量沉积法的结果最大,而质能吸收系数法和King-Spiels因子法的结果更为合理;在入射γ光子能量高于150 keV时,King-Spiers因子法给出的结果要略高于其他方法的结果,但其能够反映出红骨髓对γ光子能量更强的吸收能力.结论 综合比较低能区和高能区不同方法给出的结果后,发现King-Spiers因子法是最合理的估算红骨髓剂量的方法.  相似文献   

2.
随着核与辐射在人们日常生活中的应用越来越广泛,其所带来的危害也备受关注。剂量估算是辐射技术应用的重要一环,估算出人体所受的剂量对评价辐射造成的确定效应与随机效应起着重要作用。蒙特卡罗(MC)模拟与人体参考模型结合可对核事故、医疗照射和环境的辐射剂量进行估算,是一种快速且对硬件要求较少的剂量估算方法,目前正面临模型开发和计算耗时的瓶颈,笔者对此现状进行综述。  相似文献   

3.
放射外照射事故剂量重建中的蒙特卡罗模拟方法   总被引:2,自引:2,他引:2       下载免费PDF全文
目的 建立放射外照射事故剂量重建的计算机系统。方法 基于MIRD的人体及其器官的数学模型,采用蒙特卡罗(MC)方法,结合 放射事故的受照模式,建立放射外照射事故剂量重建的计算机系统。结果 成功研制了放射事故剂量重建的计算机系统。用这个系统计算了河南省^60Co放射事故危重病人的剂量,其计算结果与实验模拟测量和生物剂量检测结果十分一致。结论 本系统方便、快捷,它不但可估算事故受照人员的器官剂量和全身剂量,而且也能用于事故早期剂量的估计。  相似文献   

4.
在事故受照射人员的医学处理中, 为了估计损伤程度, 要求提供受照者的剂量学参数, 这些参数应能较好的反映人体损伤效应。目前, 文献上使用的剂量表达方法是多种多样的, 我国的剂量学工作者对干细胞活存计权方法做了研究。研究结果表明, 对于骨髓型放射病剂量范围内的照射, 干细胞剂量可以表达全身造血组织的损伤程度。当然, 对于高度不均匀的外照射, 全身辐射损伤除了用干细胞剂量参数表达外, 还应给出受高剂量照射部证或某些关键器官的剂量。此外, 还对事故物理剂量测量方法做了实验研究。结果表明, 中国生产的4种手表红宝石具有良好的剂量学特性, 是一种比较实用的个人事故剂量计。  相似文献   

5.
目的 计算河南6 0 Co放射源事故中事故患者“梅”受到的辐射剂量。方法 基于MIRD的成人数学模型用蒙特卡罗随机模型方法计算事故患者的辐射剂量 ,并编制了一个用于此计算实用计算机程序。结果 模拟事故患者的具体情况 ,计算了人体主要器官剂量和全身剂量。结论 这种理论模拟的方法与用体模的实验模拟测量结果较为一致 ,说明用这种算法算出的各个器官剂量和全身剂量 ,对于临床治疗有参考价值 ,而且模拟方便 ,快速 ,适用于核事故医学应急中的患者器官剂量估算。  相似文献   

6.
用蒙特卡罗方法估算60Co辐射源事故患者的辐射剂量   总被引:7,自引:3,他引:4       下载免费PDF全文
目的:计算河南^60Co放射源事故中事故患者“梅”受到的辐射剂量,方法:基于MIRD的成人数学模型蒙特卡罗随机模型方法计算故忠患者的辐射剂量,并编制了一个用用此计算实用计算机程序,结果:模拟事故患者的具体情况,计算了人体主要器官剂量和全身剂量,结论:这种理论模拟的方法与用模的实验模拟测量结果较为一致,说明用这种算法算出的各个器官剂量和全身剂量,对于临床治疗有参考价值,而且模拟方便,快速,适用于核事故医学应急中的患者器官剂量估算。  相似文献   

7.
目的 以蒙特卡罗EGS4算法(Monte Carlo EGS4,MC EGS4)为基础,用时序性SPECT/CT检查探讨核素内照射治疗吸收剂量的计算方法.方法 用体模标定153Sm放射性浓度与SPECT图像灰度值的关系;用RMI467型CT体模标定不同组织物理密度与CT图像灰度值的关系;优化MC EGS4计算程序.以此为基础,通过时序性SPECT/CT检查和累积尿液的放射性测定,计算4例肿瘤多发骨转移患者153Sm-乙二胺四亚甲基膦酸(EDTMP,按体重注射24.1 MBq/kg)内照射治疗后不同靶器官的三维吸收剂量分布和病灶、骨髓、脊髓、盆腔性腺组织的吸收剂量.结果 SPECT和CT图像的灰度值分别与153Sm放射性浓度和组织物理密度之间存在线性对应关系(P<0.05).多发骨转移癌患者骨转移灶的153Sm-EDTMP吸收剂量分布明显不均,放射性累积中心点吸收剂量最高,边缘区域剂量降低.1例患者最高点内照射吸收剂量率为4.3×10-8 Gy·s-1,左髂骨转移灶最高吸收剂量约为5.6 Gy,病灶边缘吸收剂量为2.0 Gy.其他3例患者病灶最高点吸收剂量率分别为4.5×10-8,3.5×10-8,3.8×10-8 Gy·s-1.结论 基于MC EGS4算法,用时序性SPECT/CT可计算核素内照射治疗患者的病灶和其他靶器官吸收剂量及其三维分布.  相似文献   

8.
目的基于高剂量率(HDR)后装治疗用的微型铱源(^192Ir)结构,研究不锈钢外壳对其吸收剂量的影响。方法将微型铱源置于高10.5cm、直径11.1cm的圆柱形水模体中心,采用蒙特卡罗计算方法比较有无不锈钢外壳2种情况下铱源周围模体的剂量分布。结果在不锈钢外壳和水模的附近区域,2种情况下的剂量分布存在一定的差别。随着离源距离增加,剂量分布非常接近。结论近距离治疗中,不锈钢外壳在铱源剂量分布计算中的影响可以忽略。  相似文献   

9.
作者探讨了半身照射条件下以微核(MN)率估计相当于全身一次均匀照射剂量的可能性,并与人体模型以相同条件照射后的剂量计算结果及临床反应相验证,结果显示:以MN率所估算的剂量与人体模型所计算出的相当于一次全身均匀照射的红骨髓干细胞活存计权剂量及临床反应基本一致,照后无或仅有白细胞、血小板计数的轻微下降,多数有恶心呕吐,可能与全腹照射有关。因此,在以下半身为主的高度不均匀照射条件下,MN检测所估计的生物剂量可用以表示全身等效剂量及反映全身损伤程度。  相似文献   

10.
目的 研究在放射性核素肾动态显像中肾脏和膀胱所受到的内照射剂量。方法 建立一个双隔室链肾脏-膀胱排泄模型并推导出相关的数学表达式,模拟放射性核素肾动态显像剂被人体摄入后的转移、排泄过程,计算核素在肾脏、膀胱和人体其余组织内的总衰变数,再采用蒙特卡罗模拟的方法,计算核素衰变释放的射线在肾脏以及膀胱内产生的能量沉积,最后根据辐射的品质因数计算它们的有效剂量。结果131I-OIH和 99Tcm-DTPA显像剂为例,肾脏受到的内照射剂量分别为0.058mGy/MBq(131I-OIH)和0.0054 mGy/MBq(99Tcm-DTPA);膀胱受到的内照射剂量分别为0.40mGy/MBq(131I-OIH)和0.033mGy/MBq(99Tcm-DTPA)。结论 常规剂量水平下的放射性核素肾动态显像对肾脏和膀胱造成的辐射剂量很小。  相似文献   

11.
放射诊断成像的频次和对公众的累积剂量不断提升, 带来的辐射风险引起广泛关注, 但人体所接受辐射剂量的准确测量很难实现。蒙特卡罗模拟作为以概率统计理论为指导的数值计算方法, 已应用于各种放射诊断成像的剂量评估、成像优化和辐射防护。本文就蒙特卡罗方法的原理、蒙特卡罗模拟的建模过程及其在放射诊断剂量估算的应用进展进行综述。  相似文献   

12.
目的 研究光子外照射事故下人体的剂量重建方法,并在局部剂量分布层面上验证方法的准确性。方法 基于开源蒙特卡罗代码Geant4,使用国际辐射防护委员会(ICRP)103号建议书推荐的人体体素模型,研究外照射事故照射条件下的剂量重建方法,实现全身平均吸收剂量、器官吸收剂量和局部剂量分布的评价。为了对建立的方法进行验证,使用组织等效的物理仿真模型ART;通过CT扫描,建立起其分辨率为1.57 mm×1.57 mm×10.00 mm的体素模型;在标准辐射场下进行一系列热释光剂量计(TLD)照射实验,比较实验和剂量重建模拟的结果。结果 实验测量值的综合相对不确定度为10.9%,剂量重建模拟值的综合相对不确定度在非组织交界面处为7.10%,在组织交界面处为16.6%。对451个测量点位进行统计分析,模拟值除以测量值的均值为0.972,标准差为0.083 8,在0.95~1.05,0.90~1.10和0.80~1.20范围内的比例分别为49.2%,79.4%和96.4%。结论 基于人体体素模型的蒙特卡罗剂量重建方法无论在全身或器官层面,还是在局部剂量分布层面都满足实际使用的精度要求,可作为外照射事故下对受照者进行剂量评估的有力工具,为诊断和救治提供支持。  相似文献   

13.
The purpose of this study is to evaluate the performance of dose calculation algorithms used in radiotherapy treatment planning systems (TPSs) in comparison with Monte Carlo (MC) simulations in nonelectronic equilibrium conditions. MC simulations with PENELOPE package were performed for comparison of doses calculated by pencil beam convolution (PBC), analytical anisotropy algorithm (AAA), and Acuros XB TPS algorithms. Relative depth dose curves were calculated in heterogeneous water phantoms with layers of bone (1.8?g/cm3) and lung (0.3?g/cm3) equivalent materials for radiation fields between 1?×?1?cm2 and 10?×?10?cm2. Analysis of relative depth dose curves at the water-bone interface shows that PBC and AAA algorithms present the largest differences to MC calculations (uMC?=?0.5%), with maximum differences of up to 4.3% of maximum dose. For the lung-equivalent material and 1?×?1?cm2 field, differences can be up to 24.3% for PBC, 11.5% for AAA, and 7.5% for Acuros. Results show that Acurus presents the best agreement with MC simulation data with equivalent accuracy for modeling radiotherapy dose deposition especially in regions where electronic equilibrium does not hold. For typical (nonsmall) fields used in radiotherapy, AAA and PBC can exhibit reasonable agreement with MC results even in regions of heterogeneities.  相似文献   

14.
Estimating the dose delivered to the patient in X-ray computed tomography (CT) examinations is not a trivial task. Monte Carlo (MC) methods appear to be the method of choice to assess the 3D dose distribution. The purpose of this work was to extend an existing MC-based tool to account for arbitrary scanners and scan protocols such as multi-slice CT (MSCT) scanners and to validate the tool in homogeneous and heterogeneous phantoms. The tool was validated by measurements on MSCT scanners for different scan protocols under known conditions. Quantitative CT Dose Index (CTDI) measurements were performed in cylindrical CTDI phantoms and in anthropomorphic thorax phantoms of various sizes; dose profiles were measured with thermoluminescent dosimeters (TLD) in the CTDI phantoms and compared with the computed dose profiles. The in-plane dose distributions were simulated and compared with TLD measurements in an Alderson-Rando phantom. The calculated dose values were generally within 10% of measurements for all phantoms and all investigated conditions. Three-dimensional dose distributions can be accurately calculated with the MC tool for arbitrary scanners and protocols including tube current modulation schemes. The use of the tool has meanwhile also been extended to further scanners and to flat-detector CT.  相似文献   

15.
目的 计算2 5 2 Cf裂变中子源的中子和γ辐射在组织等效模体内的剂量分布 ,为使用2 5 2 Cf裂变中子源进行中子放疗提供有用的剂量学参数。方法 建立2 5 2 Cf源和组织等效模体的三维几何计算模型 ,利用蒙特卡罗方法进行中子和γ辐射联合输运计算。结果 计算了两种医用2 5 2 Cf裂变中子源在水、血液、肌肉、皮肤、骨骼和肺组织等效材料构成的模体中距源不同距离点处的中子和γ辐射吸收剂量。结论 蒙特卡罗计算结果与文献数据以及使用双电离室实验测量的结果符合得较好。对2 5 2 Cf裂变中子源在 5种组织材料构成的模体中中子和γ辐射的剂量分布进行了比较 ,使用水作为组织等效材料对2 5 2 Cf裂变中子源在以肌肉、血液和皮肤构成的局部组织内的剂量分布进行模拟计算 ,可取得比较可靠的结果。  相似文献   

16.
153Sm-EDTMP吸收剂量的MonteCarlo和MIRD算法比较   总被引:1,自引:0,他引:1       下载免费PDF全文
目的以153Sm-乙二胺四甲撑膦酸(153Sm-EDTMP)治疗鼻咽癌多发性骨转移为例,分别用蒙特卡罗法(Monte Carlo,MC)和MIRD方法计算153Sm-EDTMP治疗后病灶和骨髓等靶器官的吸收剂量,探讨其临床应用之不同.方法基于病人时序性SPECT/CT扫描和累积尿液的放射性测定,利用优化的MC EGS4程序和MIRD方法分别计算病灶和其他靶器官的吸收剂量.结果MC EGS4法计算结果提示病灶内剂量分布不均匀.患者注射153Sm-EDTMP 33.6×37 MBq,左髂骨转移病灶最高吸收剂量约为5.6 Gy,病灶边缘的吸收剂量为2.0 Gy,以病灶区最高剂量点为参考点,则椎体、皮质、骨髓、脊髓和盆腔组织仅相当于最高剂量的37%、12%、13%、21%和2%;MIRD方法的计算数据仅能粗略提示全身红骨髓吸收剂量,为2.39 Gy.结论MC EGS4方法能准确计算病灶、骨髓和其他靶器官的内照射吸收剂量,故可以真正指导核素临床治疗;而MIRD仅能大致评估153Sm-EDTMP的骨髓毒性.  相似文献   

17.
Purpose In this study we evaluated the accuracy of the Monte Carlo (MC) and effective path length (EPL) methods for dose calculations in the inhomogeneous thorax phantom. Materials and methods The Philips SL 75/5 linear accelerator head was modeled using the MCNP4C Monte Carlo code. An anatomic inhomogeneous thorax phantom was irradiated with a 6-MV photon beam, and the doses along points of the central axis of the beam were measured by a small ionization chamber. The central axis relative dose was calculated by the MCNP4C code and the EPL method in a conventional treatment planning system. The results of calculations and measurements were compared. Results For all measured points on the thorax phantom the results of the MC method were in agreement with the actual measurement (local difference was less than 2%). For the EPL method, the amount of error was dependent on the field size and the point location in the phantom. The maximum error was +19.5 and +26.8 for field sizes of 10 × 10 and 5 × 5 cm2 for lateral irradiation. Conclusion Our study showed large, unacceptable errors for EPL calculations in the lung for both field sizes. The accuracy of the MC method was better than the recommended value of 3%. Thus, application of this method is strongly recommended for lung dose calculations, especially for small field sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号