首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPR oximetry using paramagnetic particles relies on the measurement of the EPR linewidth, which is directly related to the pO2. It was previously found that some of the paramagnetic materials with optimal EPR spectroscopic properties in vitro may lose their responsiveness to oxygen in tissues (change of the calibration curve of the EPR linewidth as a function of the pO2). We hypothesized that coating paramagnetic particle materials could improve the stability of response, as well as the biocompatibility. In this study, very thin films holding paramagnetic materials were prepared with different biopolymers (cellulose acetate, cellulose triacetate, cellulose nitrate, silicone, and polyurethane) that already are accepted for clinical applications. Their performance was evaluated in EPR oximetry by measuring the stability of the calibration curves (EPR linewidth as a function of pO2) after a prolonged period in an aqueous environment (1 week in saline) or in vivo (implantation for 3 weeks under the skin of mice). We found that one type of silicone film was able to stabilize the responsiveness of an intrinsically unstable carbon material (a wood char).  相似文献   

2.
Using the broadening of the electron paramagentic resonance (EPR) linewidth of paramagnetic particles by oxygen, it is possible to make measurements of the partial pressure of oxygen in vivo. While the results obtained so far with EPR oximetry are very encouraging, several paramagnetic materials may lose their responsiveness to oxygen in tissues. This aim of this study was to provide evidence that an appropriate coating can preserve the oxygen sensitivity of paramagnetic materials in vivo. Two charcoals that have the oxygen-sensing properties required for EPR oximetry (combined with a tendency to lose responsiveness to oxygen when placed in tissues) were coated using pyroxylin. Sensitivity to variations in pO2 was checked by inducing hypoxia in the muscles of mice injected with charcoal. While the uncoated material lost responsiveness to oxygen within few days, the particles coated with 20-30% of pyroxylin did not lose their responsiveness for more than 2 months.  相似文献   

3.
Oxygenation status is a key determinant in both tumor growth and responses to therapeutic interventions. The oxygen partial pressure (pO2) was assessed using a novel pulsed electron paramagnetic resonance (EPR) spectroscopy at 750 MHz. Crystals of lithium phthalocyanine (LiPc) implanted into either squamous cell carcinoma (SCC) tumor or femoral muscle on opposing legs of mice were tested by pulsed EPR. The results showed pO2 of SCC tumor was 2.7 +/- 0.4 mmHg, while in the femoral muscle it was 6.1 +/- 0.9 mmHg. A major advantage of pulsed EPR oximetry over conventional continuous-wave (CW) EPR oximetry is the lack of influence from subject motion, while avoiding artifacts associated with modulation or power saturation. Resonators in pulsed EPR are overcoupled to minimize recovery time. This makes changes in coupling associated with object motion minimal without influencing spectral quality. Consequently, pulsed EPR oximetry enables approximately a temporal resolution of approximately one second in pO2 monitoring in conscious subjects, avoiding significant influence of anesthetics on the physiology being studied. The pO2 in SCC tumor and muscle was found to be higher without anesthesia (3.9 +/- 0.5 mmHg for tumor, 8.8 +/- 1.2 mmHg for muscle). These results support the advantage of pulsed EPR in examining pO2 in conscious animals with LiPc chronically implanted in predetermined regions.  相似文献   

4.
Recent advances in electron paramagnetic resonance (EPR) oximetry have established the use of the particulate materials fusinite and lithium phthalocyanine (LiPc) as probes for measurement of oxygen tensions in tissues in vivo with a sensitivity and accuracy that is relevant for studying pathophysiological processes. India ink, another potentially very useful new probe for EPR oximetry, shares the critical properties of fusinite and LiPc and has the additional advantage of already having been widely used clinically with no apparent toxicity. The line width is particularly sensitive to changes in oxygen tension of less than 30 mmHg; in this range the line broadening/unit of pO2 is much greater than that of fusinite and LiPc. Over the range of biological conditions that can occur in vivo, the response of the EPR spectrum of India ink to pO2 is independent of pH, oxidants, reductants, and the nature of the medium. In this paper we describe the relevant properties of India ink and its use to measure pO2 in vivo in experimental animals and a human subject.  相似文献   

5.
The absolute partial pressure of oxygen (pO(2)) in the mammary gland pad and femoral muscle of female mice was measured using EPR oximetry at 700 MHz. A small quantity of lithium phthalocyanine (LiPc) crystals was implanted in both mammary and femoral muscle tissue of female C3H mice. Subsequent EPR measurements were carried out 1-30 days after implantation with or without control of core body temperature. The pO(2) values in the tissue became stable 2 weeks after implantation of LiPc crystals. The pO(2) level was found to be higher in the femoral muscle than in the mammary tissue. However, the pO(2) values showed a strong dependence on the core body temperature of the mice. The pO(2) values were responsive to carbogen (95% O(2), 5% CO(2)) breathing even 44-58 days after the implantation of LiPc. The LiPc linewidth was also sensitive to changes in the blood supply even 60 days after implantation of the crystals. This study further validates the use of LiPc crystals and EPR oximetry for long-term non-invasive assessment of pO(2) levels in tissues, underscores the importance of maintaining normal body core temperature during the measurements, and demonstrates that mammary tissue functions at a lower pO(2) level than muscle in female C3H mice.  相似文献   

6.
The time-domain (TD) mode of electron paramagnetic resonance (EPR) data collection offers a means of estimating the concentration of a paramagnetic probe and the oxygen-dependent linewidth (LW) to generate pO2 maps with minimal errors. A methodology for noninvasive pO2 imaging based on the application of TD-EPR using oxygen-induced LW broadening of a triarylmethyl (TAM)-based radical is presented. The decay of pixel intensities in an image is used to estimate T2*, which is inversely proportional to pO2. Factors affecting T2* in each pixel are critically analyzed to extract the contribution of dissolved oxygen to EPR line-broadening. Suitable experimental and image-processing parameters were obtained to produce pO2 maps with minimal artifacts. Image artifacts were also minimized with the use of a novel data collection strategy using multiple gradients. Results from a phantom and in vivo imaging of tumor-bearing mice validated this novel method of noninvasive oximetry. The current imaging protocols achieve a spatial resolution of approximately 1.0 mm and a temporal resolution of approximately 9 s for 2D pO2 mapping, with a reliable oxygen resolution of approximately 1 mmHg (0.12% oxygen in gas phase). This work demonstrates that in vivo oximetry can be performed with good sensitivity, accuracy, and high spatial and temporal resolution.  相似文献   

7.
The paramagnetic spin probe Oxo63 is used in oximetric imaging studies based on electron paramagnetic resonance (EPR) methods by monitoring the oxygen-dependent linewidth while minimizing the contributions from self-broadening seen at high probe concentrations. Therefore, it is necessary to determine a suitable dose of Oxo63 for EPR-based oxygen mapping where the self-broadening effects are minimized while signal intensity adequate for imaging can be realized. A constant tissue concentration of spin probe would be useful to image a subject and assess changes in pO2 over time; accumulation or elimination of the compound in specific anatomical regions could translate to and be mistaken for changes in local pO2, especially in OMRI-based oximetry. The in vivo pharmacokinetics of the spin probe, Oxo63, after bolus and/or continuous intravenous infusion was investigated in mice using a novel approach with X-band EPR spectroscopy. The results show that the half-life in blood was 17-21 min and the clearance by excretion was 0.033-0.040 min(-1). Continuous infusion following a bolus injection of the probe was found to be effective to obtain stable plasma concentration as well as image intensity to permit reliable pO2 estimates.  相似文献   

8.
EPR oximetry using an implantable paramagnetic probe was used to quantify the partial pressure of oxygen (pO(2)) in tissues in a transplantable mouse tumor model (TLT) after administration of 34 different vasodilators belonging to one of the following classes: angiotensin-converting enzyme inhibitors, calcium antagonists, alpha antagonists, potassium channel openers, beta-blockers, NO donors, and peripheral vasoactive agents. Twenty-four compounds were efficient in significantly increasing the local pO(2) in a majority of tumors. The increase of local pO(2) using pharmacological treatments was lower than that achieved by using oxygen or carbogen breathing. This technique offers an unprecedented tool for rapidly and accurately measuring treatment-induced modifications of pO(2) in tumors. Magn Reson Med 42:627-630, 1999.  相似文献   

9.
Oxygen plays a critical role in the pathophysiology of myocardial injury during both ischemia and subsequent reperfusion (I/R). Thus, oxygen concentration is an important variable to measure during I/R. In the present work, electron paramagnetic resonance (EPR)-based oximetry was used to measure the oxygen concentration during a series of I/R episodes and oxygenation levels were correlated with the contractile and hemodynamic functions of the heart. A custom-developed electronically tunable surface coil resonator working at 1.1 GHz was used to determine tissue pO(2) in the beating heart. Microcrystalline particulate of lithium phthalocyanine was used as an EPR oximetry probe. Isolated and perfused rat hearts were subjected to 1 or 3 hr durations of preischemic perfusion, followed by 15-min I/R cycles. In hearts perfused for 3 hr prior to 15-min I/R cycles, the myocardial pO(2) decreased gradually on subsequent reperfusions of three successive I/R cycles. However, in hearts perfused for 1 hr there was almost 100% recovery of myocardial pO(2) in all three I/R cycles. The extent of oxygenation recovered in each reperfusion cycle correlated with the recovery of hemodynamic and contractile function. The results also showed that the oxygen consumption rate of the heart at the end of each I/R episode decreased in direct proportion to the functional recovery. In summary, it was observed that the amount of myocardial oxygen consumption during I/R could provide a reliable index of functional impairment in the heart.  相似文献   

10.
Tumor tissue oxygenation is an important parameter that is positively correlated to the chemo- or radiation treatment outcome of certain tumors. Hence, methods to accurately and noninvasively determine the concentration of oxygen (pO2) in tumors will be valuable. In this study, electron paramagnetic resonance (EPR) spectroscopy, utilizing microcrystalline particulates of lithium phthalocyanine (LiPc), was used to perform repeated measurements of pO2 as a function of tumor growth. We permanently embedded the particulates in the tumor by coimplanting them with RIF-1 tumor cells during inoculation in mice. This procedure enabled repeated measurements of oxygen concentration in the tumor to be obtained for >2 weeks during its growth phase. The particulates were stable and nontoxic to the tumor cells. Both an in vitro clonogenic assay and an in vivo tumor growth rate examination in C3H mice showed no apparent effect on cell proliferation or tumor growth rate. The measurements indicated that the pO2 of the tumor decreased exponentially with tumor growth and reached hypoxic levels ( approximately 4 mmHg) within 4 days after inoculation of the tumor cells. Spatial EPR imaging revealed a nonuniform distribution of the embedded particulates, which were localized mainly in the middle of the tumor volume. Oxygen mapping of the tumor, obtained by spectroscopic EPR imaging, showed significant variation of pO2 within the tumor. In summary, EPR spectroscopy and imaging with an embedded oximetry probe enabled accurate and repeated measurements of pO2 to be obtained in growing tumors under nonperturbing conditions.  相似文献   

11.
PURPOSE: To examine, using blood oxygen level dependent (BOLD) MRI and EPR oximetry, the changes in oxygenation of intracranial tumors induced by carbogen breathing. MATERIALS AND METHODS: The 9L and CNS-1 intracranial rat tumor models were imaged at 7T, before and during carbogen breathing, using a multi-echo gradient-echo (GE) sequence to map R(2)*. On a different group of 9L tumors, tissue pO(2) was measured using EPR oximetry with lithium phthalocyanine as the oxygen-sensitive material. RESULTS: The average decline in R(2)* with carbogen breathing was 13 +/- 1 s(-1) in the CNS-1 tumors and 29 +/- 4 s(-1) in the 9L tumor. The SI vs. TE decay curves indicate the presence of multiple components in the tumor. Tissue pO(2) in the two 9L tumors measured was 8.6 +/- 0.5 and 3.6 +/- 0.6 mmHg during air breathing, and rose to 20 +/- 7 and 16 +/- 4 mmHg (mean +/- SE) with carbogen breathing. Significant changes were observed by 10 minutes, but changes in pO(2) and R(2)* continued in some subjects over the entire 40 minutes. CONCLUSION: EPR results indicate that glial sarcomas may be radiobiologically hypoxic. Both EPR and BOLD data indicate that carbogen breathing increases brain tumor oxygenation. These data support the use of BOLD imaging to monitor changes in oxygenation in brain tumors.  相似文献   

12.
The development of oxygen-sensitive paramagnetic materials is being pursued actively because of their potential applications in in vivo EPR oximetry. Among these materials, several charcoals and carbohydrate chars are of special interest because of their desirable EPR properties: high sensitivity of the EPR linewidth to the partial pressure of oxygen, simple EPR spectra, and high spin density. Their potential use in humans, however, is limited by the need to demonstrate that they will not lead to deleterious effects. A strategy was used to optimize the biocompatibility of the oxygen-sensitive materials by decreasing the size of the particles and coating them with suspending or surfactive agents such as arabic gum, polox-amer (Pluriol 6800®), and polyvinylpyrrolidone. The coated particles of a carbohydrate char and fusinite were characterized in vitro for their size, stability, and pO2 sensitivity. The feasibility of performing pO2 measurement was examined in vivo by inducing ischemia in the gastrocnemius muscle of mice. The use of arabic gum for coating the fusinite particles preserved the pO2 sensitivity in vivo, whereas the other surfactive agents led to a loss of the pO2 sensitivity in vivo. Small particles of fusinite coated by arabic gum and intravenously administered to mice accumulated in the liver, whereas the uncoated fusinite was toxic when injected intravenously due to the large size and aggregation of the particles. Histological studies performed up to 6 months after the injection in muscles of mice did not indicate any toxicity from the materials used in the present study.  相似文献   

13.
A novel procedure for in vivo imaging of the oxygen partial pressure (pO2) in implanted tumors is reported. The procedure uses electron paramagnetic resonance imaging (EPRI) of oxygen-sensing nanoprobes embedded in the tumor cells. Unlike existing methods of pO2 quantification, wherein the probes are physically inserted at the time of measurement, the new approach uses cells that are preinternalized (labeled) with the oxygen-sensing probes, which become permanently embedded in the developed tumor. Radiation-induced fibrosarcoma (RIF-1) cells, internalized with nanoprobes of lithium octa-n-butoxy-naphthalocyanine (LiNc-BuO), were allowed to grow as a solid tumor. In vivo imaging of the growing tumor showed a heterogeneous distribution of the spin probe, as well as oxygenation in the tumor volume. The pO2 images obtained after the tumors were exposed to a single dose of 30-Gy X-radiation showed marked redistribution as well as an overall increase in tissue oxygenation, with a maximum increase 6 hr after irradiation. However, larger tumors with a poorly perfused core showed no significant changes in oxygenation. In summary, the use of in vivo EPR technology with embedded oxygen-sensitive nanoprobes enabled noninvasive visualization of dynamic changes in the intracellular pO2 of growing and irradiated tumors.  相似文献   

14.
The in vivo measurement of oxygen in tissues is of great interest because of oxygen's fundamental role in life. Many methods have been developed for such measurement, but all have been limited, especially with regard to repeated measurement, degree of invasiveness, and sensitivity. We describe electron spin resonance (ESR) oximetry with paramagnetic oxygen-sensing probe for in vivo measurement of oxygen in brain tissues by home-made ESR/MR dual imaging spectroscopy. Lithium 5, 9, 14, 18, 23, 27, 32, 36-octa-n-butoxy-2,3-naphthlocyanine (LiNc-BuO) radical was employed as the solid oxygen-sensing probe, and we confirmed its ability to report partial pressure of oxygen (pO(2)) in brain tissues of live animals under normal and pathological conditions for more than a month. pO(2) measurements could also be made repeatedly on the same animal and at the same location. The implantation site of LiNc-BuO in examined rats was verified by 0.5 T magnetic resonance (MR) imaging. Septic-shock rats were used to monitor tissue oxygenation during pathological state. A decline in pO(2) levels from severe hypotension during sepsis was detected, and generation of nitric oxide (NO) in brain tissues was confirmed by NO spin trapping. ESR oximetry using oxygen-sensing probe and NO spin-trapping can be used to monitor pO(2) change and NO production simultaneously and repeatedly at the same site in examined animals.  相似文献   

15.
Semipermeable hydrogels formed with a biocompatible alginate solution and Ba(2+) ions protect encapsulated cells and tissues from a foreign immune system. For the viability and metabolic activity of the encapsulated materials, a sufficient oxygen supply inside the capsules is necessary. Quantitative (19)F-MRI was performed on perfluorocarbon-loaded alginate capsules implanted into the peritoneal cavity, the musculus quadriceps femoris, and beneath the kidney capsule of rats, in order to determine in vivo the partial oxygen pressure (pO(2)) inside the capsules at these implantation sites. The temporal behavior of the pO(2) values was observed for at least 3 months. The most stable values over time were observed in the kidney, where inter-rat pO(2) differences were considerable. In the muscle, the values were very high directly after implantation and decreased to nearly zero after 2 weeks. In the peritoneal cavity, values changed randomly over a wide range between different rats and over time. Magn Reson Med 42:1039-1047, 1999.  相似文献   

16.
EPR oximetry is used for in vivo and in vitro measurements of oxygen in biological systems, including experimental animals. The accuracy of oxygen measurements in T2 (line width) EPR oximetry is significantly improved if least-squares simulation is used to extract the line width parameters. The oxygen effect on the EPR spectra of nitroxide solutions and aqueous suspensions of fusinite can be described as an additional homogeneous broadening that modifies the EPR spectrum of the oxygen-free probe. This allows one to use a one-parameter line width model in most cases. The simulations were carried out with the use of a fast-convolution algorithm followed by Levenberg-Marquardt optimization. The validity of error estimates provided by this method was tested on sets of experimental spectra taken under common conditions. It is shown that the accuracy of oxygen measurements in line width (T2) oximetry is determined not only by the probe sensitivity (rate of line width change versus oxygen concentration), but also by the signal-to-noise ratio, inhomogeneous contribution to the line shape (e.g., unresolved proton superhyperfine structure), and the spectral window. The accuracy of oxygen measurements is compared for aqueous solutions of two nitroxide radicals with different superhyperfine structure and for aqueous suspensions of fusinite.  相似文献   

17.
Liposomes containing the deuterated, charged, aqueous soluble nitroxide 4-trimethyl-ammonium-2,2,6,6-tetramethylpiperidine-d16-1-oxyl (d-Cat1) were used as probes to measure oxygen concentrations in vivo. Following intramuscular or intraperitoneal injection of the liposome suspension. ICR mice were placed over the surface probe of a low frequency (1.1 GHz) electron paramagnetic resonance (EPR) spectrometer. The linewidth of the deuterated nitroxide is sensitive to changes in the dissolved oxygen concentration: this parameter was calibrated separately so that linewidths measured in the injected mice could be converted into oxygen tensions. This technique detected substantial changes in pO2 as the oxygen content of the breathing gas was changed from 21 to 85 to 0%. Intravenous injection of the liposomes also is possible, and the liposomes accumulate in the liver and spleen, where detectable, oxygen-sensitive EPR signals can be measured.  相似文献   

18.
In Overhauser enhanced magnetic resonance imaging (OMRI) for in vivo measurement of oxygen partial pressure (pO2), a paramagnetic contrast agent is introduced to enhance the proton signal through dynamic nuclear polarization. A uniform proton T1 is generally assumed for the entire region of interest for the computation of pO2 using OMRI. It is demonstrated here, by both phantom and in vivo (mice) imaging, that such an assumption may cause erroneous estimate of pO2. A direct estimate of pixel-wise T1 is hampered by the poor native MR intensities, owing to the very low Zeeman field (15-20 mT) in OMRI. To circumvent this problem, a simple method for the pixel-wise mapping of proton T1 using the OMRI scanner is described. A proton T1 image of a slice through the center of an SCC tumor in a mouse clearly shows a range of T1 distribution (0.2 approximately 1.6 s). Computation of pO2 images using pixel-wise T1 values promises oximetry with minimal artifacts by OMRI.  相似文献   

19.
A novel method, called relaxo-oximetry, for rapid spatially resolved in vivo measurements of oxygen concentration using time-domain radiofrequency (RF) electron paramagnetic resonance (EPR) is described. Time-domain data from triaryl methyl (TAM)-based single-electron contrast agents were processed by systematic deletion of the initial time points to arrive at T2*-weighted discrimination of signal amplitudes. In experiments involving phantoms, the line widths [ approximately (T2*)(-1)] increased as a function of oxygen, and the slope (line width/pO(2)) was the same for both absorption- and magnitude-mode line shapes. Line widths derived from T2* weighting and the computed pO(2) values agreed favorably with the measured ones from phantoms of known oxygen tension. In vivo relaxo-oximetry was performed on C3H mice, and it was found that the liver was more hypoxic than the kidneys. For tumors, 2D oxygen maps were generated while the animal breathed room air or Carbogen(R) (95% O(2)/5% CO(2)). Carbogen(R) enhanced oxygen concentration within the tumor, and the pO(2) histograms showed considerable heterogeneity. Clark electrode oxygen measurements on organs and tumors were in good agreement with tissue oxygen measurements done by relaxo-oximetry. Thus, from a single spatial image data set, pO(2) measurements can be done noninvasively by relaxo-oximetry, and 3D imaging can be performed in less than 3 min.  相似文献   

20.
19F NMR spin-lattice relaxometry of hexafluorobenzene (HFB) has been shown to be a highly sensitive indicator of tumor oxygenation. In this study hexamethyldisiloxane (HMDSO) was identified as a proton NMR analog, and its potential as a probe for investigating dynamic changes in tissue oxygen tension (pO2) was evaluated. HMDSO has a single proton resonance (delta= -0.3 ppm) and the spin-lattice relaxation rate, Rl (= 1/T1) exhibits a linear dependence on pO2: R1 (s(-1)) = 0.1126 + 0.0013* pO2 (torr) at 37 degrees C. To demonstrate application in vivo, HMDSO was administered into healthy rat thigh muscle (100 microl) and tumors (50 microl). Local pO2 was determined by using pulse-burst saturation recovery (PBSR) 1H NMR spectroscopy to assess R1. Water and fat signals were effectively suppressed by frequency-selective excitation of the HMDSO resonance. Rat thigh muscle had a mean baseline pO2 of 35 +/- 11 torr, with a typical stability of +/-3 torr over 20 min, when the rats breathed air. Altering the inhaled gas to oxygen produced a significant increase in pO2 to 100-200 torr. In tumors, altering the inspired gas also produced significant (albeit generally smaller) changes. This new pO2 reporter molecule offers a potentially valuable new tool for investigating pO2 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号