首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 375 毫秒
1.
Human serum albumin (HSA), a major plasma protein and plasma-derived therapeutic, interacts with a wide variety of drugs and native plasma metabolites. In this study the interactions between HSA and small lipophilic molecules all-trans retinoic acid (RA), all-trans retinaldehyde (retinal, RAL) and all-trans retinyl acetate (RAC) were investigated by UV-vis absorption spectroscopy, fluorescence spectroscopy and circular dichroism (CD). This paper focuses on investigation of the interactions between HSA and RA by the visible CD. RAL and RAC were used in this study due to their structural identity to RA to elucidate the importance of the end functional group for the complex formation. Our data demonstrate that RA specifically binds to HSA in a stable non-covalent complex at least at two internal binding sites with close but distinct affinities. Upon titration of HSA with RA, visible CD spectra clearly demonstrate the appearance of a well-defined induced positive Cotton Effect (CE) around 350 nm. Beyond ligand-to-protein ratio of 0.8 and up to saturation (2.0), CD exhibits two major bands of opposite signs, suggesting exciton coupling between the chromophore molecules in the protein interior. The fluorescence quenching data suggest proximity of the primary RA binding site to tryptophan (W214). RAC shows a weak association with HSA with stoichiometry close to that of RA, while interactions of RAL with HSA proceed non-specifically at multiple sites. Contrary to RA, the adducts of HSA with RAC and RAL do not show any induced chirality, thus indicating that despite their high structural similarity to RA, both compounds do not appear to occupy the internal binding sites, but associate with the protein exterior.  相似文献   

2.
The molecular mechanism of C.I. Acid red 73 binding to human serum albumin (HSA) was investigated by spectroscopy and molecular docking procedures. The molecular docking results indicated that subdomain IB of HSA was the main active binding site for C.I. Acid red 73. The spectroscopic experiment results showed that the mechanism of the interaction between C.I. Acid red 73 and HSA was dominantly initiated by complex formation and the number of binding site (n) was 1.71 at 298K. The molecular docking study and thermodynamic analysis suggested that the forces acting was predominantly hydrophobic and hydrogen bond interactions. Far-UV circular dichroism (CD) spectroscopy also revealed that the conformation of the HSA changed slightly after C.I. Acid red 73 bound to the HSA. The mean distance between the bound dye and the Trp residue is 3.28nm as calculated from F?rster energy transfer.  相似文献   

3.
The competitive binding of two ligands, ibuprofen (IBP) and salicylic acid (SAL), to human serum albumin (HSA) was studied by using nuclear magnetic resonance (NMR) relaxation measurements. When the concentration of one ligand was increased in the solution containing IBP, SAL and HSA, the fractions of free IBP and SAL were increased because of the competitive binding. The 1H relaxation rates (R1) of both ligands were subsequently decreased. If a ligand is in fast exchanging between the free and bound forms, the observed 1H relaxation rate is a weighted average of that for the free ligand and the protein-ligand complex. The concentrations of the free and bound ligands can be quantitatively derived from the relaxation rates. The results presented in this work revealed that IBP and SAL shared certain low-affinity binding sites on the HSA molecule, in addition to the same high-affinity binding site of AIII.  相似文献   

4.
AS-3201 [(3R)-2'-(4-bromo-2-fluorobenzyl)spiro[pyrrolidine-3,4'(1'H)-pyrrolo[1,2-a]pyrazine]-1',2,3',5(2'H)-tetrone] is a structurally novel and stereospecifically potent aldose reductase (AKR1B; EC 1.1.1.21) inhibitor, which contains a succinimide ring that undergoes ring-opening at physiological pH levels. To delineate intermolecular interactions governing its favorable pharmacokinetic profile, the interaction of AS-3201 (R-isomer) with plasma proteins, especially human serum albumin (HSA), was examined in comparison with that of the optical antipode (S-isomer). Fluorescence, kinetic, and high-performance frontal analyses showed that the R-isomer is more strongly bound than the S-isomer to sites I and II on HSA, and the R-isomer is particularly protected from hydrolysis, suggesting that the stable HSA-R-isomer complex contributes to its prolonged activity. The thermodynamic parameters for the specific binding indicated that in addition to hydrophobic interactions, hydrogen bonds contribute significantly to the R-isomer complex formation. (13)C NMR observations of the succinimide ring (5-(13)C enriched), which are sensitive to its ionization state, suggested the presence of a hydrogen bond between the R-isomer and HSA, and (19)F NMR of the pendent benzyl ring (2-(19)F) evaluated the equilibrium exchange dynamics between the specific sites. Furthermore, fatty acid binding or glycation (both are site II-oriented perturbations) inhibited the binding to one of the specific sites and reduced the stereospecificity of HSA toward the isomers, although the clinical influence of these perturbations on the R-isomer binding ratio seemed to be minor. Thus, the difference in the interaction mode at site II might be a major cause of the stereospecificity; this is discussed on the basis of putative binding modes. The present results, together with preliminary absorption and distribution profiles, provide valuable information on the stereospecific pharmacokinetic and pharmacodynamic properties of the R-isomer relevant for the therapeutic treatment of diabetic complications.  相似文献   

5.
The interactions between mangiferin and human serum albumin (HSA) were investigated by spectroscopy and molecular modeling. The results proved the formation of complex between mangiferin and HSA. Hydrophobic interaction dominated in the association reaction. Mangiferin statically quenched the fluorescence of HSA in a concentration dependent manner positively deviating from the linear Scatchard equation. The binding of mangiferin to HSA lead to changes in the conformation of HSA according to synchronous fluorescence spectra, FT-IR, UV–vis and CD data. The presence of amino acids and metal ion affected the binding constant of mangiferin–HSA complex. Computational mapping of the possible binding sites of mangiferin revealed the molecule to be bound in the large hydrophobic cavity of subdomain IIA.  相似文献   

6.
Interaction between the Vitamin A derivative all-trans retinoic acid and the lipocalin member bovine beta-lactoglobulin (BLG) was studied by circular dichroism (CD) and electronic absorption spectroscopy at different pH values. In neutral and alkaline solutions achiral retinoic acid forms a non-covalent complex with the protein as indicated by the appearance of a negative Cotton effect around 347 nm associated to the narrowed and red shifted pi-pi(*) absorption band of the ligand. The induced optical activity is attributed to the helical distortion of the conjugated chain caused by the chiral protein binding environment. As the disappearing CD activity showed in the course of CD-pH titration experiment, retinoic acid molecules dissociate from BLG upon acidification but this release is completely reversible as proved by the reconstitution of the CD and absorption spectra after setting the pH back to neutral. This unique behavior of the complex is explained by the conformational change of BLG (Tanford transition) which involves a movement of the EF loop at the entrance of the central cavity from open to closed conformation in the course of pH lowering. From these results it was inferred that retinoic acid binds within the hydrophobic calyx of the beta-barrel.  相似文献   

7.
Exposure of neutrophils to either lipopolysaccharide (LPS) or N-formyl-methionyl-leucyl-phenylalanine (fMLP) is associated with changes in the expression of cell adhesion molecules and elevation of intracellular calcium ions. Although dietary flavonoids are reported to possess anti-inflammatory properties, little is known regarding the effect of their metabolites. We have investigated the effects of quercetin and its major metabolites on LPS and fMLP-stimulated human neutrophils using concentrations comparable to those reported in feeding studies on human volunteers. The metabolite quercetin 3-glucuronide caused a significant reduction in fMLP-evoked calcium influx in human neutrophils (approximately 35%), while neither quercetin 3'-sulfate nor quercetin produced a similar change. Acute exposure of human neutrophils to LPS altered cell shape and surface expression of CD16, but neither of these events were significantly altered by quercetin, quercetin 3-glucuronide nor quercetin 3'-sulfate. In addition, LPS caused a fivefold up-regulation in the expression of beta(2)-integrin (CD11b/Mac 1) and a concomitant 70% down-regulation of L-selectin (CD62L) adhesion molecule expression in human neutrophils. Neither effect was altered by quercetin, quercetin 3-glucuronide or quercetin 3'-sulfate. In conclusion, we found that acute exposure to quercetin and quercetin 3'-sulfate does not affect either expression of cell adhesion molecules or the elevation of intracellular calcium ions in response to LPS and fMLP in human neutrophils. However, quercetin 3-glucuronide reduced fMLP-evoked calcium responses. While this study highlights that metabolites of quercetin may possess different biological properties, dietary ingestion of quercetin is unlikely to exert a major effect on neutrophil function in vivo.  相似文献   

8.
Differences in the serum protein binding of prazosin in man and rat   总被引:1,自引:0,他引:1  
The serum protein binding of prazosin in man and rat has been studied in vitro by equilibrium dialysis. Prazosin was more extensively bound in human serum than in rat serum with binding ratios (B/F) of 14.3 +/- 3.4 and 4.4 +/- 0.2 (corresponding to 93.4 and 81.4% bound), respectively. This difference in binding between the species was partly due to qualitative differences between human and rat serum albumin, but also to the lower concentration of albumin in rat serum. Rat serum albumin (RSA) apparently showed two different classes of binding sites for prazosin, one with high (KD = 5.78 X 10(-6) M) and one with low (KD = 1.1 X 10(-4) M) affinity; the former is suggested as representing alpha 1-acid glycoprotein (alpha 1-AGP) with one binding site for prazosin per molecule, the latter as representing RSA with 0.28 binding sites per molecule. Human serum albumin (HSA) and human alpha 1-AGP both showed one class of binding sites with KD values of 2.7 X 10(-5) and 1.95 X 10(-6) M, respectively. HSA possessed 0.5 and human alpha 1-AGP 1 binding site for prazosin per molecule. The binding parameters obtained for the isolated serum proteins overestimated to some degree the total serum protein binding of prazosin in man. This was explained by a specific deviation from the law of mass action. HSA was the major binding protein in human serum at therapeutic concentrations, with ca. 60% of the total binding, the remaining 40% being bound to alpha 1-AGP. Anticipating that the high affinity binding site on the RSA preparation represents the binding of prazosin to alpha 1-AGP, then this protein accounts for 70% of the binding in rat serum, while rat serum albumin accounts for approximately 23%. The binding of prazosin to lipoproteins was insignificant in both species. The observed differences between man and rat in the serum protein binding of prazosin implicate differences in the two species with respect to prazosin pharmacokinetics and the pharmacological effect.  相似文献   

9.
Human serum albumin (HSA) is the most prominent protein in plasma. The three-domain design of HSA provides a variety of binding sites for many ligands, including heme, bilirubin and drugs. Here, we report the effect of new generation, non-steroidal anti-inflammatory drug (NSAID) meloxicam on the albumin conformation and ligand binding. In the present work the interaction of meloxicam with HSA in aqueous solution at physiological pH has been investigated through circular dichroism and fluorescence spectroscopy. The strong quenching of the fluorescence clearly indicated that the binding of the drug to HSA changed the microenvironment of tryptophan residue and the tertiary structure of HSA. This was confirmed by the destabilization of the warfarin binding site. CD and fluorescence spectroscopic results showed marked reductions (about 40% decrease in the CD Cotton effect intensity, and ∼15% decrease of the fluorescence intensity) in the affinity of albumin for bilirubin upon meloxicam binding. The strong inhibition of warfarin and ANS bound to protein after meloxicam modification compared with aspirin confirms that the binding site of both drugs is not the same.  相似文献   

10.
The binding of acetylsalicylic acid (ASA) to human serum albumin (HSA) and myeloma immunoglobulin (IgG) has been studied. The heterogeneity of the binding sites on both proteins was indicated by the non-linearity of the Scatchard plots. The association constants and the number of binding sites were determined. Near-UV circular dichroism (CD) spectrum of ASA-HSA complex showed a broad peak at 300 nm, which originated from the perturbed ASA molecule. This agrees with previous suggestion that electrostatic interactions played an important role in the binding. IgG-ASA complex showed CD spectrum changes between 300 nm and 260 nm. These changes suggested that, besides electrostatic interactions, the side chain chromophores of IgG also took part in the binding by hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号