首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Atorvastatin (ATO) is of the statin class and is used as an orally administered lipid-lowering drug. ATO is a reversible synthetic competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase thus leading to a reduction in cholesterol synthesis. It has recently been demonstrated that ATO has different pharmacological actions, which are unrelated to its lipid-lowering effects and has the ability to treat chronic airway diseases. This paper reviews the potential of ATO as an anti-inflammatory, antioxidant, and anti-proliferative agent after oral or inhaled administration. This paper discusses the advantages and disadvantages of using ATO under conditions associated with those found in the airways. This treatment could potentially be used to support the formulating of ATO as an inhaler for the treatment of chronic respiratory diseases.  相似文献   

2.
Defects of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein affect the homeostasis of chloride, bicarbonate, sodium, and water in the airway surface liquid, influencing the mucus composition and viscosity, which induces a severe condition of infection and inflammation along the whole life of CF patients. The introduction of CFTR modulators, novel drugs directly intervening to rescue the function of CFTR protein, opens a new era of experimental research. The review summarizes the most recent advancements to understand the characteristics of the infective and inflammatory pathology of CF lungs.  相似文献   

3.
《Drug discovery today》2022,27(2):612-625
Evasion of regulated cell death (RCD), mainly referring to apoptosis, autophagy-dependent cell death, necroptosis, and other subroutines, is one of the well-established hallmarks of cancer cells. Accumulating evidence has revealed several small-molecule compounds that target different subroutines of RCD in cancer therapy. In this review, we summarize key pathways of apoptosis, autophagy-dependent cell death and necroptosis in cancer, and describe small-molecule compounds that target these pathways and have potential as therapeutics. These inspiring findings light the way towards the discovery of more ‘magic bullets’ that could work individually or cooperatively to target precisely the three RCD subroutines and so improve cancer treatment.  相似文献   

4.
Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis.  相似文献   

5.
《药学学报(英文版)》2021,11(10):2983-2994
Genomic instability remains an enabling feature of cancer and promotes malignant transformation. Alterations of DNA damage response (DDR) pathways allow genomic instability, generate neoantigens, upregulate the expression of programmed death ligand 1 (PD-L1) and interact with signaling such as cyclic GMP–AMP synthase-stimulator of interferon genes (cGAS–STING) signaling. Here, we review the basic knowledge of DDR pathways, mechanisms of genomic instability induced by DDR alterations, impacts of DDR alterations on immune system, and the potential applications of DDR alterations as biomarkers and therapeutic targets in cancer immunotherapy.  相似文献   

6.
Efferocytosis as an apoptotic cell (AC) clearance mechanism facilitates the removal of dangerous and damaged cells, an important process in regulating normal homeostasis. Failure to correctly execute apoptosis and efferocytosis is associated with atherosclerosis, as well as chronic inflammatory and autoimmune disorders such as systemic lupus erythematosus (SLE). Effective and timely efferocytosis involves various molecules that act as “Find-Me” signals or as alarmins to quickly allow identification by phagocytic cells. In recent years, most of these molecules have been investigated, but less attention has been paid to the nuclear molecules associated with efferocytosis of ACs and necrotic cells (NCs). These molecules have several functions including acting as alarmin signals for faster recognition of ACs, facilitating the cleanup of ACs and for maintaining self-tolerance. The same group of molecules is also implicated in several inflammatory and autoimmune diseases. Previous studies have shown that these molecules also serve as targets for pharmacological agents such as necrostatins, recombinant Fcnb, anti-histone, neutralizing antibodies, calbiochem, aminophylline, activated protein C, CD24IgG recombinant fission protein, and recombinant thrombomodulin. Thus, greater understanding of these molecules/pathways will enable developments in the treatment and/or prevention of various disorders, especially autoimmune diseases. Here, we review current knowledge about the mechanisms by which nucleic acids, histones, nucleosomes and monosodium urate microcrystals (MSU) can act as alarmins/“Find-Me” signals, how they might be stimulated in defective efferocytosis and their function and importance as biomarkers for prognosis and treatment of atherosclerosis, inflammatory disorders and autoimmune diseases.  相似文献   

7.
《Drug discovery today》2022,27(8):2373-2385
Autophagy, an evolutionarily highly conserved cellular degradation process, plays the Janus role (either cytoprotective or death-promoting) in colorectal cancer, so the targeting of several key autophagic pathways with small-molecule compounds may be a new therapeutic strategy. In this review, we discuss autophagy-associated cell death pathways and key cytoprotective autophagy pathways in colorectal cancer. Moreover, we summarize a series of small-molecule compounds that have the potential to modulate autophagy-associated cell death or cytoprotective autophagy for therapeutic purposes. Taken together, these findings demonstrate the Janus role of autophagy in colorectal cancer, and shed new light on the exploitation of a growing number of small-molecule compounds to target autophagy in future cancer drug discovery.  相似文献   

8.
9.
《药学学报(英文版)》2021,11(9):2783-2797
Exosomes are cell-derived nanovesicles with diameters from 30 to 150 nm, released upon fusion of multivesicular bodies with the cell surface. They can transport nucleic acids, proteins, and lipids for intercellular communication and activate signaling pathways in target cells. In cancers, exosomes may participate in growth and metastasis of tumors by regulating the immune response, blocking the epithelial–mesenchymal transition, and promoting angiogenesis. They are also involved in the development of resistance to chemotherapeutic drugs. Exosomes in liquid biopsies can be used as non-invasive biomarkers for early detection and diagnosis of cancers. Because of their amphipathic structure, exosomes are natural drug delivery vehicles for cancer therapy.  相似文献   

10.
MicroRNAs (miRNAs) have emerged as critical modulators involved in the regulation of airway remodeling in asthma. MicroRNA-182-5p (miR-182-5p) has been reported as a key miRNA in regulating the proliferation and migration of various cell types, and its dysfunction contributes is implicated in a wide range of pathological processes. Yet, it remains unknown whether miR-182-5p modulates the proliferation and migration of airway smooth muscle (ASM) cells during asthma. In the present study, we aimed to determine the potential role of miR-182-5p in regulating the proliferation and migration of ASM cells induced by tumor necrosis factor (TNF)-α in vitro. We found that TNF-α stimulation markedly reduced miR-182-5p expression in ASM cells. Gain-of-function experiments showed that miR-182-5p upregulation suppressed the proliferation and migration of ASM cells induced by TNF-α. By contrast, miR-182-5p inhibition had the opposite effect. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-182-5p. TRIM8 expression was induced by TNF-α stimulation, and TRIM8 knockdown markedly impeded TNF-α-induced ASM cell proliferation and migration. Moreover, miR-182-5p overexpression or TRIM8 knockdown significantly downregulated the activation of nuclear factor-κB (NF-κB) induced by TNF-α. However, TRIM8 restoration partially reversed the miR-182-5p-mediated inhibitory effect on TNF-α-induced ASM cell proliferation and migration. In conclusion, our study indicates that miR-182-5p restricts TNF-α-induced ASM cell proliferation and migration through downregulation of NF-κB activation via targeting TRIM8. The results of our study highlight the potential importance of the miR-182-5p/TRIM8/NF-κB axis in the airway remodeling of asthma.  相似文献   

11.
《药学学报(英文版)》2020,10(4):603-614
Pancreatic cancer is one of the most aggressive cancers with poor prognosis and a low 5-year survival rate. The family of P21-activated kinases (PAKs) appears to modulate many signaling pathways that contribute to pancreatic carcinogenesis. In this work, we demonstrated that PAK1 is a critical regulator in pancreatic cancer cell growth. PAK1-targeted inhibition is therefore a new potential therapeutic strategy for pancreatic cancer. Our small molecule screening identified a relatively specific PAK1-targeted inhibitor, CP734. Pharmacological and biochemical studies indicated that CP734 targets residue V342 of PAK1 to inhibit its ATPase activity. Further in vitro and in vivo studies elucidated that CP734 suppresses pancreatic tumor growth through depleting PAK1 kinase activity and its downstream signaling pathways. Little toxicity of CP734 was observed in murine models. Combined with gemcitabine or 5-fluorouracil, CP734 also showed synergistic effects on the anti-proliferation of pancreatic cancer cells. All these favorable results indicated that CP734 is a new potential therapeutic candidate for pancreatic cancer.  相似文献   

12.
Cellular crosstalk is an important mechanism in the pathogenesis of inflammatory disorders and cancers. One significant means by which cells communicate with each other is through the release of exosomes. Exosomes are extracellular vesicles formed by the outward budding of plasma membranes, which are then released from cells into the extracellular space. Many studies have suggested that microvesicles released by colon cancer cells initiate crosstalk and modulate the fibroblast activities and macrophage phenotypes. Interestingly, crosstalk among colon cancer cells, macrophages and cancer-associated fibroblasts maximizes the mechanical composition of the stromal extracellular matrix (ECM). Exosomes contribute to cancer cell migration and invasion, which are critical for colon cancer progression to metastasis. The majority of the studies on colorectal cancers (CRCs) have focused on developing exosomal biomarkers for the early detection and prediction of CRC prognosis. This study highlights the crosstalk among colon cancer-derived exosomes, macrophage phenotypes and fibroblasts during colon cancer metastasis.  相似文献   

13.
14.
Cancer immunotherapy has brought a great revolution in the treatment of advanced human cancer. Immune checkpoint inhibitors (ICIs) that target cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death protein 1 pathway (PD-1/PD-L1) have been widely administrated in the past years and demonstrated promising in a variety of malignancies. While some patients show benefit from ICIs, others do not respond or even develop resistance to these therapies. Among the responders, the treatments are consequently accompanied with immune-related adverse effects (irAEs), which are diverse in their effected organs, degree of severity and timing. Some of the toxicities are fatal and result in discontinuance of immunotherapy. The toxicity profile from anti-CTLA-4 to anti-PD-1/PD-L1 immunotherapies is distinct from those caused by conventional anticancer therapies, though their presentation may be similar. In order to better help clinicians recognize, monitor and manage irAEs in a growing population of cancer patients who are receiving ICI therapy, this article summarizes the FDA approved ICIs and focuses on (1) existing toxic evidence related to ICIs, (2) occurrence of irAEs, (3) factors influencing tumor responders treated with ICIs, (4) predictive biomarkers of irAEs, and (5) new potential mechanisms of resistance to ICI therapy.  相似文献   

15.
Platelets have been proved to exacerbate influenza infection and its complications. Inhibition of platelet activation may be a feasible method for preventing severe infection and secondary acute lung injury (ALI). Isofraxidin (IFD) is a natural coumarin isolated from the plants Sarcandra glabra and Siberian ginseng, and exerts anticancer, antioxidant and antiinflammatory effects. In the present study, we examined the therapeutic effects of IFD in ADP- or arachidonic acid (AA)-induced platelet aggregation model and in influenza A virus (IAV)-induced ALI mouse model. The results showed that IFD significantly inhibited platelet aggregation induced by ADP and AA in vitro in a concentration-dependent manner as well as the release of soluble P-selectin and platelet factor 4. Moreover, IFD significantly relieved IAV-induced lung inflammation, reduced the expressions of platelet activation biomarkers (P-selectin and CD61), decreased the serum levels of TNF-α, IL-1β, IL-6 and MIP-2, suppressed peripheral platelet aggregation and prolonged the survival time of infected mice. The western blotting results also demonstrated that IFD reduced the phosphorylation levels of PI3K, AKT and p38 in the activated platelets stimulated by ADP and IAV infection. But IFD did not have any effects on IAV replication. It indicated that IFD ameliorated IAV-induced severe lung damage and lethal infection by suppressing platelet aggregation via regulating PI3K/AKT and MAPK pathways.  相似文献   

16.
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells’ sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.  相似文献   

17.
《药学学报(英文版)》2021,11(9):2749-2767
Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.  相似文献   

18.
19.
Accumulating evidence indicates that regulators of macrophages polarization may play a key role in the development of allergic asthma (AA). However, the exact role of long non-coding RNAs (lncRNAs) in regulating in macrophages polarization in the pathogenesis of dermatophagoides farinae protein 1(Der f1)-induced AA is not fully understood. The purpose of this study was to determine the function of lncRNA AK085865 in regulating macrophages in AA. Here we report that lncRNA AK085865 served as a critical regulator of macrophages polarization and reduced the pathological progress of asthmatic airway inflammation. In response to the challenge of Der f1, AK085865−/− mice displayed attenuated allergic airway inflammation, including decreased eosinophil in BALF and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. In addition, Der f1-treated AK085865−/− mice show fewer M2 macrophages when compared with WT asthmatic mice. After adopting bone marrow-derived macrophages (BMDM, M0) from WT mice, Der f1-treated AK085865−/− mice also revealed a light inflammatory reactions. We further observed that the percentage of type II innate immune lymphoid cells (ILC2s) decreased in AK085865−/− asthmatic mice. Moreover, M2 macrophages helped promote the differentiation of ILC2s, probably through the exosomal pathway secreted by M2 macrophages. Taken together, these findings reveal that AK085865 depletion can ameliorate asthmatic airway inflammation by modulating macrophage polarization and M2 macrophages can promote the differentiation of innate lymphoid cells progenitor (ILCP) into ILC2s.  相似文献   

20.
Obesity is a metabolic disease that affects all ages; it is considered life-threatening condition as it leads to fatal complications such as; cardiovascular diseases and diabetes. The therapeutic options include; life-style modifications, pharmacotherapy intervention, and surgical intervention. Bariatric surgery (BS) is considered as the most effective option among the others for its rapid weight loss, maintaining the lost mass, and improving the quality of life of the patients. Nevertheless, BS leads to severe changes in the bioavailability of medications, especially for chronic diseases, which may reach to limit where the patient's life endangers. Recently, pharmaceutical formulations had developed several methods to improve the drug bioavailability of drugs though the implying of nanotechnology. Nonotechnology is responsible for reducing the size of the drugs to the nano range (<1000 nm), which increase the drug surface area, dissolution, absorption, and, most importantly, the bioavailability of these drugs. It is believed that BS malabsorption and drugs bioavailability problems can be solved using nanotechnology for its advantages in overcoming BS complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号