首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotope‐labeled synthesis of four of the major metabolites of asenapine is described. The synthesis of [13CD3]‐asenapine N‐oxide proceeded in two synthetic steps. Preparation of [13CD3]‐asenapine 11‐hydroxysulfate and [13C6]‐N‐desmethylasenapine paralleled established synthetic protocols with effective utilization of labeled precursors. The synthesis of [13CD3]‐asenapine N+‐glucuronide was achieved in three chemical steps followed by purification.  相似文献   

2.
[13CD3]‐TAK‐459 (1A), an HSP90 inhibitor, was synthesized from [13CD3]‐sodium methoxide in three steps in an overall yield of 29%. The key intermediate [13CD3]‐2‐methoxy‐6‐(4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)pyridine was synthesized in two steps from 2,6‐dibromopyridine and stable isotope‐labeled sodium methoxide. [14C]‐TAK‐459 (1B) was synthesized from [14C(U)]‐guanidine hydrochloride in five steps in an overall radiochemical yield of 5.4%. The key intermediate, [14C]‐(R)‐2‐amino‐7‐(2‐bromo‐4‐fluorophenyl)‐4‐methyl‐7,8‐dihydropyrido[4,3‐d]pyrimidin‐5(6H)‐one, was prepared by microwave‐assisted condensation.  相似文献   

3.
Syntheses of stable and radioactive isotope‐labeled anticonvulsant agent, JNJ‐26990990, that is, N‐(benzo[b]thien‐3‐ylmethyl)‐sulfamide and its metabolites are described. [13C15N]Benzo[b]thiophene‐3‐carbonitrile was first prepared by coupling of 3‐bromo‐benzo[b]thiophene with [13C15N]‐copper cyanide. The resultant [13C15N]benzo[b]thiophene‐3‐carbonitrile was reduced with lithium aluminum deuteride to give [13CD215N]benzo[b]thiophen‐3‐yl‐methylamine; which was then coupled with sulfamide to afford [13CD215N]‐N‐(benzo[b]thien‐3‐ylmethyl)‐sulfamide, the stable isotope‐labeled compound with four stable isotope atoms. Direct oxidation of [13CD215N]‐N‐(benzo[b]thien‐3‐ylmethyl)‐sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope‐labeled sulfoxide and sulfone metabolites. On the other hand, radioactive 14C‐labeled N‐(benzo[b]thien‐3‐ylmethyl)‐sulfamide was prepared conveniently by sequential coupling of 3‐bromo‐benzo[b]thiophene with [14C]‐copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide.  相似文献   

4.
Synthesis of multiple stable isotope‐labeled antibacterial agent RWJ‐416457, (N‐{3‐[3‐fluoro‐4‐(2‐methyl‐2,6‐dihydro‐4H‐pyrrolo[3,4‐c]pyrazol‐5‐yl)‐phenyl]‐2‐oxo‐oxazolidin‐5‐ylmethyl}‐acetamide), and its major metabolite, N‐{3‐[4‐(2,6‐dihydro‐4H‐pyrrolo[3,4‐c]pyrazol‐5‐yl)‐3‐fluoro‐phenyl]‐2‐oxo‐oxazolidin‐5‐ylmethyl}‐acetamide, is described. The stable isotope‐labeled [13CD3]RWJ‐416457 was prepared readily by acetylation of the precursor amine, 5‐aminomethyl‐3‐[3‐fluoro‐4‐(2‐methyl‐2,6‐dihydro‐4H‐pyrrolo[3,4‐c]pyrazol‐5‐yl)‐phenyl]‐oxazolidin‐2‐one with CD313COCl in pyridine. Synthesis of the stable isotope‐labeled metabolite involved a construction of multiple isotope‐labeled pyrazole ring. N,N‐dimethyl(formyl‐13C,D)amide dimethyl acetal was first prepared by treating N,N‐dimethyl(formyl‐13C,D)amide with dimethyl sulfate, followed by sodium methoxide. Then, N‐{3‐[3‐fluoro‐4‐(3‐oxo‐pyrrolidin‐1‐yl)‐phenyl]‐2‐oxo‐oxazolidin‐5‐ylmethyl}‐acetamide was condensed with N,N‐dimethyl(formyl‐13C,D)amide dimethyl acetal, and the resultant β‐ketoenamine intermediate underwent pyrazole ring formation with hydrazine‐15N2, to give the [13C15N2D]‐labeled metabolite. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Deuterium‐labelled coenzyme Q10 ([2‐CD3‐1′‐CD2]coenzyme Q10, coenzyme Q10‐d5 ) was synthesized by condensation of 2,3‐dimethoxy‐[5‐CD3]methyl‐1, 4‐hydroquinone with [1‐CD2]decaprenol. Five positions were selected for deuteration as replacement at these positions allowed examination of every step of the synthesis. This examination was carried out by a combination of 1H‐ and 13C‐nuclear magnetic spectrometry and mass spectrometry. Further, these positions have been proved to be metabolically stable. This reagent makes simultaneous quantification of the source of coenzyme Q10 (exogenously supplied or endogenously supplied) possible in biological samples by measurements on gas chromatography–mass spectrometry. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
14C‐labeled saxagliptin, 13CD2‐labeled saxagliptin, and its 13CD2‐labeled 5‐hydroxy metabolite were synthesized to further support development of the compound for biological studies. This paper describes new syntheses leading to the desired compounds. A total of 3.0 mCi of 14C‐labeled saxagliptin was obtained with a specific activity of 53.98 μCi/mg (17.13 mCi/mmol). The radiochemical purity determined by HPLC was 99.29%, and the overall radiochemical yield was 3.0% based upon 100 mCi of [14C]CH2I2 starting material. By following similar synthetic routes, 580.0 mg of 13CD2‐labeled saxagliptin and 153.1 mg of 13CD2‐labeled 5‐hydroxysaxagliptin metabolite were prepared. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The Batcho‐Leimgruber strategy was employed to synthesize 5‐[2H3]‐methoxy‐1 H‐indole 4 from commercially available 5‐hydroxy‐2‐nitrotoluene 1 and CD3I. Compound 4 was treated with oxalyl chloride, dimethylamine and lithium aluminum hydride to yield 5‐[2H3]‐methoxy‐N,N‐dimethyltryptamine 6 . Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A practical synthetic laboratory route for the synthesis of trideuteriomethyl‐[13C] iodide (13CD3I) (from tetradeuterio‐[13C]‐methanol and hydriodic acid) is described. We comment on the experimental protocol, and the use of water as an ‘additive’ to improve the synthetic yield. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
[phenyl13C6]Lachnanthocarpone ([phenyl13C6]2,6‐dihydroxy‐9‐phenylphenalen‐1‐one), a hypothetical intermediate in the biosynthesis of various natural phenylphenalenones, was prepared in four steps using [U‐13C]bromobenzene to introduce the label. Based on related methodologies further native phenylphenalenones such as [phenyl13C6]anigorufone, [1‐13C]anigorufone and [4′‐O13CH3]4′‐methoxyanigorufone were synthesized in labelled form. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Deleobuvir, (2E)‐3‐(2‐{1‐[2‐(5‐bromopyrimidin‐2‐yl)‐3‐cyclopentyl‐1‐methyl‐1H‐indole‐6‐carboxamido]cyclobutyl}‐1‐methyl‐1H‐benzimidazol‐6‐yl)prop‐2‐enoic acid (1), is a non‐nucleoside, potent, and selective inhibitor of hepatitis C virus NS5B polymerase. Herein, we describe the detailed synthesis of this compound labeled with carbon‐13 and carbon‐14. The synthesis of its three major metabolites, namely, the reduced double bond metabolite (2) and the acyl glucuronide derivatives of (1) and (2), is also reported. Aniline‐13C6 was the starting material to prepare butyl (E)‐3‐(3‐methylamino‐4‐nitrophenyl‐13C6)acrylate [13C6]‐(11) in six steps. This intermediate was then used to obtain [13C6]‐(1) and [13C6]‐(2) in five and four more steps, respectively. For the radioactive synthesis, potassium cyanide‐14C was used to prepare 1‐cylobutylaminoacid [14C]‐(23) via Buchrer–Bergs reaction. The carbonyl chloride of this acid was then used to access both [14C]‐(1) and [14C]‐(2) in four steps. The acyl glucuronide derivatives [13C6]‐(3), [13C6]‐(4) and [14C]‐(3) were synthesized in three steps from the acids [13C6]‐(1), [13C6]‐(2) and [14C]‐(1) using known procedures.  相似文献   

11.
A facile synthesis is described for [3,4,1′‐13C3]genistein for use as an internal standard in isoflavone analysis by mass spectrometric methods. Ethyl 4‐hydroxy[1‐13C]benzoate was first prepared from the reaction of diethyl [2‐13C]malonate and 4H‐pyran‐4‐one. Two further 13C atoms were incorporated using potassium [13C]cyanide as the source to give 4′‐benzyloxy‐[1,2,1′‐13C3]phenylacetonitrile. [3,4,1′‐13C3]Genistein was then constructed through coupling of the isotopically labelled phenylacetonitrile with phloroglucinol under Hoesch conditions, followed by formylation and cyclization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A gram‐scale synthesis of [3,4‐13C2,1α,7‐2H2]cortisone from prednisone was developed. The deuterium atom at the C‐1 position was introduced through a regioselective and stereoselective deuteration of the 1,2‐double bond of the 1,4‐diene‐3‐one using Wilkinson's catalyst. After the oxidative cleavage of the A‐ring, two carbon‐13 atoms were introduced via acetylation of an A‐ring enol lactone with [1,2‐13C2]acetyl chloride. The steroidal A‐ring was then reconstructed to incorporate the carbon‐13 atoms into the C‐3 and C‐4 positions. The deuterium atom at C‐7 was introduced through a regioselective deuteration of the 6,7‐double bond of a 4,6‐diene‐3‐one intermediate using palladium on strontium carbonate. The M + 4 stable isotope labeled cortisone was thus prepared in ca. 4% overall yield. In addition, [3,4‐13C2,1α,7‐2H2]‐11‐dehydrocorticosterone, [3,4‐13C2,1α,7‐2H2]cortisol, and [3,4‐13C2,1α,7‐2H2]corticosterone were also prepared. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Benzyl [1‐13C]acetate (2a) was prepared via esterification of sodium [1‐13C]acetate (1) with benzyl bromide in the presence of 18‐crown‐6‐ether in 97% yield. n‐Octyl [1‐13C]acetate (2b) was rapidly obtained by microwave irradiation of 1‐bromooctane and potassium [1‐13C]acetate (obtained by salt exchange of 1) absorbed on Al2O3 in 82% yield. Solvent‐free Claisen condensation of benzyl or n‐octyl [1‐13C]acetate (2a or 2b) in the presence of potassium tert‐butoxide efficiently gave benzyl or n‐octyl [1,3‐13C2]acetoacetate (3a or 3b) in 51 or 68% yield, respectively. Dibenzyl 2,4‐dimethyl[2,4‐13C2]pyrrole‐3,5‐di[13C]carboxylate (4) was synthesized from benzyl [1,3‐13C2]acetoacetate (3a) in 54% yield. [2,4‐13C2]Hymecromone (6) (7‐hydroxy‐4‐methyl[2,4‐13C2]coumarin) was obtained from n‐octyl [1,3‐13C2]acetoacetate (3b) and 1,3‐benzenediol (5) in 73% yield. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Reminyl® is a newly approved drug, used in the treatment of mild to moderate Alzheimer disease. The active compound, galantamine, was initially isolated from the bulbs of certain Narcissus species, but is at the moment also produced synthetically. In the process leading to the final approval, the synthesis of tritium‐, carbon‐14‐ and stable‐isotope‐labelled galantamine for pharmacokinetic studies was required. Racemic (±)‐1‐bromonarwedine, a compound available as intermediate from the commercial synthesis, was transformed to racemic 1‐bromo‐galantamine. Catalytic bromo‐tritium exchange, followed by HPLC purification and resolution afforded tritium‐labelled galantamine. The [14C]‐label was introduced on the nitrogen as well as on the oxygen‐methyl position. This was achieved by N‐ and O‐demethylation of galantamine and reaction of the thoroughly purified intermediate with [14C]‐methyl iodide. Stable‐isotope‐labelled galantamine was obtained likewise by 13CD3OD‐methylation of O‐demethylated galantamine under Mitsunobu conditions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The drug candidates ( 2 ) and ( 3 ) are highly potent LFA‐1 inhibitors. They were efficiently prepared labeled with carbon‐14 using a palladium‐catalyzed carboxylation of an iodo‐precursor ( 5 ) and sodium formate‐14C to afford acid [14C]‐( 6 ), which was coupled via an amide bond to chiral amines ( 7 ) and ( 8 ) in 52% and 48% overall yield, respectively, and with specific activities higher than 56 mCi/mmol and radiochemical purities of 99%. For stable isotopes synthesis, the amine [2H8]‐( 7 ) was synthesized in three steps from 2‐cyanopyridine‐2H4 using Kulinkovich‐Szymonik aminocyclopropanation, followed by coupling to L ‐alanine‐2,3,3,3‐2H4Nt‐BOC, and then removal of the BOC‐protecting group. Amide bond formation with acid ( 6 ) gave [2H8]‐( 2 ) in 36% overall yield. The amine [13C4,15N]‐( 8 ) was obtained in two steps using L‐threonine‐14C4,15N and then coupled to acid [13C]‐( 6 ) to give [13C5,15N]‐( 3 ) in 56% overall yield.  相似文献   

16.
[14C]‐N‐(6‐Chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5B ), an IKK inhibitor, was synthesized from [14C]‐barium carbonate in two steps in an overall radiochemical yield of 41%. The intermediate, [carboxyl‐14C]‐2‐methylnicotinic acid, was prepared by the lithiation and carbonation of 3‐bromo‐2‐methylpyridine. [13C4,D3]‐N‐(6‐chloro‐7‐methoxy‐9H‐pyrido [3,4‐b]indol‐8‐yl)‐2‐methyl‐3‐pyridinecarboxamide (5C ) was synthesized from [1,2,3,4‐13C4]‐ethyl acetoacetate and [D4]‐methanol in six steps in an overall yield of 2%. [13C4]‐2‐methylnicotic acid, was prepared by condensation of [13C4]‐ethyl 3‐aminocrotonate and acrolein, followed by hydrolysis with lithium hydroxide. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
(S )‐6‐(2‐Hydroxy‐2‐methylpropyl)‐3‐((S )‐1‐(4‐(1‐methyl‐2‐oxo‐1,2‐dihydropyridin‐4‐yl)phenyl)ethyl)‐6‐phenyl‐1,3‐oxazinan‐2‐one (1) and (4aR ,9aS )‐1‐(1H‐benzo[d]midazole‐5‐carbonyl)‐2,3,4,4a,9,9a‐hexahydro‐1‐H‐indeno[2,1‐b]pyridine‐6‐carbonitrile hydrochloride (2) are potent and selective inhibitor of 11β‐hydroxysteroid dehydrogenase type 1 enzyme. These 2 drug candidates developed for the treatment of type‐2 diabetes were prepared labeled with carbon‐13 and carbon‐14 to enable drug metabolism, pharmacokinetics, bioanalytical, and other studies. In the carbon‐13 synthesis, benzoic‐13C 6 acid was converted in 7 steps and in 16% overall yield to [13C6]‐(1). Aniline‐13C 6 was converted in 7 steps to 1H‐benzimidazole‐1‐2,3,4,5,6‐13C6‐5‐carboxylic acid and then coupled to a tricyclic chiral indenopiperidine to afford [13C6]‐(2) in 19% overall yield. The carbon‐14 labeled (1) was prepared efficiently in 2 radioactive steps in 41% overall yield from an advanced intermediate using carbon‐14 labeled methyl magnesium iodide and Suzuki‐Miyaura cross coupling via in situ boronate formation. As for the synthesis of [14C]‐(2), 1H‐benzimidazole‐5‐carboxylic‐14C acid was first prepared in 4 steps using potassium cyanide‐14C , then coupled to the chiral indenopiperidine using amide bond formation conditions in 26% overall yield.  相似文献   

18.
(S)‐2‐[(R)‐7‐(3,5‐Dichlorophenyl)‐5‐methyl‐6‐oxo‐5‐(4‐trifluoromethoxybenzyl)‐6,7‐dihydro‐5H‐imidazo[1,2‐a]imidazole‐3‐sulfonylamino]‐proprionamide (1), a potent lymphocyte function‐associated antigen‐1 antagonist and its sulfonamide metabolite (2) labeled with stable isotopes and carbon‐14 were prepared for Drug Metabolism and PharmacoKinetics and other studies. A long linear route was used to prepare [13C2, 2H3]‐(1) using [3,3,3‐2H]‐D‐alanine and [13C2]‐glycine in 15 steps and 2.5% overall yield. With the availability of [13C6]‐3,5‐dichloroaniline, the sulfonamide [13C6]‐(2) was prepared in 12 steps and in 5.6% overall yield. For the carbon‐14 synthesis, a six‐step synthesis gave both compounds [14C]‐(1) and [14C]‐(2) from the common sulfonyl chloride intermediate [14C]‐(15) in 18% and 4% radiochemical yields and specific activities of 44 and 40.5 mCi/mmol, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Syntheses of [13C6]‐2,4‐dinitroanisole (ring‐13C6) from [13C6]‐anisole (ring‐13C6) and [15N2]‐2,4‐dinitroanisole from anisole using in situ generated acetyl nitrate and [15N]‐acetyl nitrate, respectively, are described. Treatment of [13C6]‐anisole (ring‐13C6) with acetyl nitrate generated in 100% HNO3 gave [13C6]‐2,4‐dinitroanisole (ring‐13C6) in 83% yield. Treatment of anisole with [15N]‐acetyl nitrate generated in 10 N [15N]‐HNO3 gave [15N2]‐2,4‐dinitroanisole in 44% yield after two cycles of nitration. Byproducts in the latter reaction included [15N]‐2‐nitroanisole and [15N]‐4‐nitroanisole.  相似文献   

20.
As part of a program aimed at the design of conformationally constrained analogs of glutamic acid, (+)‐2‐aminobicyclo[3.1.0]hexane‐2,6‐carboxylic acid ( 1 ), identified as a highly potent, selective, group II metabotropic glutamate receptor agonist has been synthesized and studied clinically. Heterocyclic analogs of 1 were subsequently synthesized in which the C‐2 methylene has been replaced by an oxygen atom ( 2 ) or a sulfur atom ( 3 ). C‐14 labeled isotopomers of 1 , 2 and 3 have been synthesized to facilitate pre‐clinical ADME studies. A tritium labeled isotopomer of 1 was also synthesized for use in in vitro experiments. A stable labeled isotopomer of rac‐1 was prepared for use as an internal standard for bioanalytical assays. The key step in each of these syntheses was the reaction of chiral ketone 4 , 5 or 6 with K14CN/(NH4)2CO3 using the Bucherer–Berg protocol. In the preparation of the stable labeled isotopomer, rac‐4 ‐[13 C 2] was prepared in two steps from ethyl bromoacetate‐[UL‐13C2]; subsequent reaction of rac‐4 ‐[13 C 2] with K13CN/15NH4Cl/Na2CO3, followed by hydrolysis of the hydantoin yielded rac‐1 ‐[13 C 3,15 N ]. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号