首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
Aim: To investigate whether paeonol (Pae) has synergistic effects with cisplatin (CDDP) on the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and SMMC-7721. Methods: The cytotoxic effect of drugs was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. The coefficient of drug interaction was used to analyze the nature of drug interactions. Morphological changes were observed by acridine orange fluorescence staining. Cell cycle and the apoptosis rate were detected by flow cytometry. Bcl-2 and Bax expression were assayed by immunohistochemical staining. Results: Pae or CDDP had antiproliferative effect on the 2 cell lines in a dose-dependent manner, with different sensitivities to drugs. More interestingly, a synergistic inhibitory effect on the viability of the 2 cell lines was observed after treatment with a combination of Pae (15.63, 31.25, and 62.5 mg/L) with various concentrations of CDDP. Further study showed typical morphological changes of apoptosis if the cells were exposed to the two agents for 24 h. The apoptotic rate of the cells with combination treatment was significantly higher than that of cells treated with Pae or CDDP alone. The expression of Bcl-2 decreased and that of Bax increased in the treated groups, especially in the combination group, with the ratio of Bcl-2/Bax decreasing correspondingly. Additionally, a combination of Pae with CDDP resulted in a stronger S phase arrest, compared with Pae or CDDP alone. Conclusion: Pae, in combination with CDDP, had a significantly synergistic growth-inhibitory and apoptosis-inducing effect on the 2 human hepatoma cell lines, which may be useful in hepatoma treatment.  相似文献   

4.
Aim: To investigate the effects of a new derivative of bisphosphonates, [2-(6-aminopurine-9-yl)-l-hydroxy-phosphine acyl ethyl] phosphonic acid (CP), on human gastric cancer. Methods: Human gastric cancer cell lines (SGC-7901, BGC-823, MKN-45, and MKN-28) and human colon carcinoma cell lines (LoVo and HT-29) were tested. Cell growth was determined using the MTT assay. Flow cytometry, Western blot, caspase activity assay and siRNA transfection were used to examine the mechanisms of anticancer action. Female BALB/c nude mice were implanted with SGC- 7901 cells. From d6 after inoculation, the animals were injected with CP (200 pg/kg, ip) or vehicle daily for 24 d. Results: CP suppressed the growth of the 6 human cancer cell lines with similar IC5o values (3239 pmol/L). In SGC-7901 cells, CP arrested cell cycle progression at the G2/M phase. The compound activated caspase-9, increased the expression of pro-apoptotic proteins Bax and Bad, decreased the expression of anti-apoptotic protein Bcl-2. Furthermore, the compound selectively activated ERK1/2 without affecting JNK and p38 in SGC-7901 cells. Treatment of SGC-7901 cells with the specific ERK1/2 inhibitor PD98059 or ERK1/2 siRNA hampered CP-mediated apoptosis. In the human gastric cancer xenograft nude mouse model, chronic administration of CP significantly retarded the tumor growth. Conclusion: CP is a broad-spectrum inhibitor of human carcinoma cells in vitro, and it also exerts significant inhibition on gastric cancer cell growth in vivo. CP induces human gastric cancer apoptosis via activation of the ERK1/2 signaling pathway.  相似文献   

5.
Aim: Somatostatin receptor subtype 2 (SSTR2) is the principal mediator of somatostatin's (SST) antiproliferative effects on normal and cancer cells. Therefore, we investigated whether the enhanced expression of SSTR2 could inhibit the proliferation of tumor cells, and, if so, the mechanisms that might be involved.
Methods: SSTR2 expression levels were determined by qRToPCR in several tumor cell lines. Then, a plasmid plRES2-EGFP-SSTR2 (pSlG) was constructed and stably transfected into MCF-7 cells (MCF-7/pSIG). After SSTR2 overexpression was identified by qRT-PCR, immunofluorescence staining and a receptor binding assay, the MCF-7/pSIG cells were analyzed by PI staining for apoptosis and cell cycle arrest was tested by flow cytometry for epidermal growth factor receptor (EGFR) expression. The EGF-stimulated proliferation of MCF-7 cells was assayed by MTT.
Results: The human breast cancer cell line MCF-7 expresses a lower level of SSTR2, thereby partly accounting for the decreased response to SST. The overexpression of SSTR2 in MCF-7 cells resulted in apoptosis, cytostasis and G1/S cell cycle arrest. Furthermore the expression of EGFR, together with EGF-stimulated proliferation, was markedly decreased in the MCF-7/pSlG cells.
Conclusion: Enhanced SSTR2 expression played an antiproliferative role in MCF-7 cells through inducing apoptosis and G1/S cell cycle arrest, and also by decreasing EGFR expression, thereby counteracting the growth-stimulating effect of EGF. Our data seem to indicate that developing a new therapeutic agent capable of upregulating SSTR expression could potentially be a way to block tumor progression.  相似文献   

6.
Aim: To investigate the effects of lidamycin (LDM) on a mouse myeloma cell line (SP2/0) and human multiple myeloma cell lines (U266 and SKO-007), and provide the basis for the use of LDM in cancer therapy.
Methods: A 3-[4,5-dimethylthiazol-2-yl]5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]2H-tetrazolium inner salt (MTS) assay was used to determine the degree of growth inhibition by the drugs analyzed in this study. Cell cycle distribution and analysis were measured by flow cytometry combined with propidium iodide (PI) staining. The effects on apoptosis were measured by Hoechst 33342 staining and by flow cytometry combined with fluorescein-isothiocyanate-Annexin V/propidium iodide (FITC-Annexin V/PI) staining. Protein expression was determined by Western blot analysis. In vivo antitumor activity was measured using a murine myeloma model in BALB/c mice.
Results: There was a significant reduction in cell proliferation after treatment with LDM. The overall growth inhibition correlated with increased apoptotic cell death. LDM-induced cell apoptosis was associated with the activation of c-Jun-N-terminal kinase (JNK), and cleavage of caspase-3/7 and poly (ADP-ribose) polymerase (PARP). LDM markedly suppressed tumor growth in a murine myeloma model.
Conclusion: LDM induces apoptosis in murine myeloma SP2/0 cells as well as in human myeloma U266 and SKO-007 cell lines. The sustained activation of JNK might play a critical role in LDM-induced apoptosis in the SP2/0 cell line. LDM demonstrates significant antitumor efficacy against myeloma SP2/0 cells in mice. Taken together, our data provide some clues for further research of the effects of LDM on human multiple myeloma.  相似文献   

7.
Objective Flavans are a set of naturally occurring flavonoids possessing a 2-phenylchroman nucleus,which are widely distributed in the plant kingdom.A number of flavan compounds exhibit antitumor activities.In our previous report,a straightforward synthetic procedure for 2(±)-7,8,3',4',5'-pentamethoxyflavan(PMF)was developed.To be more important,PMF showed growth inhibitory effect on various human tumor cell lines,especially against HL60 cells.In the present study,we aim to investigate the molecular mechanisms of action of PMF in HL60 cells.This is the first report of the molecular mechanisms on anti-tumor effect of flavan compounds.Methods Trypan blue exclusion experiment was used for cell growth inhibition assay.Cell apoptosis,cell cycle distribution and the mitochondrial membrane potential(MMP)were assessed by flowcytometric analysis after AO/EB,PI and Rh123 flurescence staining,respectively.Cell cycle-and apoptosis-related proteins were detected using western blotting analysis.Results PMF(1-30 μM)inhibited the growth of HL60 cells in a time-and concentration-dependent manner.Antiproliferative effect of PMF on HL60 cells was associated with G2/M cell cycle arrest,which was mediated by regulating the expression of p21,Cdc25C and cyclin A proteins and inhibiting the phosphorylation of Cdc2 at Thr161.The prolonged PMF treatment also induced apoptosis of HL60 cells,which was characterized by DNA fragmentation,cleavage of poly(ADP-ribose)polymerase,caspase-3,caspase-8 and caspase-9,changes of Bcl-2 and Bax expression and a decrease in the mitochondrial membrane potential(MMP).Furthermore,caspase-3 inhibitor,not caspase-8 inhibitor and caspase-9 inhibitor,completely blocked PMF-caused apoptosis.Conclusions PMF inhibited the growth of HL60 cells via induction of G2/M arrest and apoptosis.Blockade of cell cycle was associated with the downregulation of Cdc2 complex activity.Both death receptor and mitochondrial apoptotic pathways explained PMF-caused apoptosis.  相似文献   

8.
Aim: To investigate the effects of S-allylcysteine (SAC), a water-soluble garlic derivative, on human ovarian cancer cells in vitro. Methods: Human epithelial ovarian cancer cell line A2780 was tested. Cell proliferation was examined with CCK-8 and colony formation assays. Cell cycle was analyzed with flow cytometry. Cell apoptosis was studied using Hoeohst 33258 staining and Annexin V/PI staining with flow cytometry. The migration and invasion of A2780 cells were examined with transwell and wound healing assays. The expression of relevant proteins was detected with Western blot assays. Results: SAC (1-100 mmol/L) inhibited the proliferation of A2780 cells in dose- and time-dependent manners (the ICsovalue was approximately 25 mmoVL at 48 h, and less than 6.25 mmol/L at 96 h). Furthermore, SAC dose-dependently inhibited the colony formation of A2780 cells. Treatment of A2780 cells with SAC resulted in G/S phase arrest and induced apoptosis, accompanied by decreased expression of pro-caspase-3, Parp-1 and Bcl-2, and increased expression of active caspase-3 and Bax. SAC treatment significantly reduced the migration of A2780 cells, and markedly decreased the protein expression of Wnt5a, p-AKT and c-Jun, which were the key proteins involved in proliferation and metastasis. Conclusion: SAC suppresses proliferation and induces apoptosis in A2780 ovarian cancer cells in vitro.  相似文献   

9.
Aim: The aim of this study was to investigate the effects of aloe-emodin, a natural compound from the root and rhizome of Rheum palmatum, on the growth of hu- man cervical cancer cells, HeLa. Methods: HeLa cells were treated with various concentrations of aloe-emodin for 1-5 d, and cell growth was measured by 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. The long-term growth effect was investigated by crystal violet assay. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. The alkaline phos- phatase (ALP) activity was analyzed by a chemical analyzer. Finally, Western blotting was used to indicate the abundant changes of protein kinase C (PKC), c- myc, cyclins, cyclin-dependent kinases (CDK), and proliferating cell nuclear anti- gen (PCNA). Results: Aloe-emodin inhibited the growth of HeLa cells in a dose- dependent manner at concentrations ranging between 2.5 and 40 0rnol/L. The flow cytometric analysis showed that HeLa cells were arrested at the G2/M phase. This effect was associated with the decrease in cyclin A and CDK2, and the increase in cyclin B 1 and CDK1. More importantly, the ALP activity was found to be increased by aloe-emodin treatment, and accompanied by the inhibition of PCNA expression. In addition, aloe-emodin suppressed the expression of PKCα and c-myc. Conclusion: These findings provide a possible mechanistic explana- tion for the growth inhibitory effect of aloe-emodin on HeLa, which includes cell cycle arrest and inducing differentiation.  相似文献   

10.
Aim: To study the caspase-3-independent mechanisms in oridonin-induced MCF-7 human breast cancer cell apoptosis in vitro. Methods: The viability of oridonin- treated MCF-7 cells was measured by MTT (thiazole blue) assay. Apoptotic cells with condensed nuclei were visualized by phase contrast microscopy. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. The apoptotic ratio was determined by lactate dehydrogenase assay. Cell cycle alternation and mitochondrial membrane potential were measured by flow cytometric analysis. Bax, Bcl-2, caspase-3, caspase-9, heat shock protein (Hsp)90, p53, p-p53, p21, Poly (ADP-ribose) polymerase (PARP), and the inhibitor of caspase-activated DNase (ICAD) protein expressions were detected by Western blot analysis. Results: Oridonin inhibited cell growth in a time- and dose-dependent manner. Cell cycle was altered through the upregulation of p53 and p21 protein expressions. Pancaspase inhibitor Z-VAD-fmk and calpain inhibitor II both decreased cell death ratio. Nucleosomal DNA fragmentation and the downregulation of △ψmit were detected in oridonin-induced MCF-7 cell apoptosis, which was involved in a postmitochondrial caspase-9-dependent pathway. Decreased Bcl-2 and Hsp90 expression levels and increased Bax and p21 expression levels were positively correlated with elevated levels of phosphorylated p53 phosphorylation. Moreover, PARP was partially cleaved by calpain rather than by capase-3. Condusion: DNA damage provoked alternations in the mitochondrial and caspase-9 pathways as well as p53-mediated cell cycle arrest, but was not related to caspase-3 activity in oridonin-induced MCF-7 cells.  相似文献   

11.
In a search for new anticancer agents, we have identified serratamolide (AT514), a cyclodepsipeptide from Serratia marcescens 2170 that induces cell cycle arrest and apoptosis in various cancer cell lines. A cell viability assay showed that the concentrations that cause 50% inhibition (IC50) in human cancer cell lines range from 5.6 to 11.5 microM depending on the cell line. Flow cytometry analysis revealed that AT514 caused cell cycle arrest in G0/G1 or cell death, depending on the cell type and the length of time for which the cells were exposed to the drug. Subsequent studies revealed that AT514-induced cell death is caused by apoptosis, as indicated by caspases activation (8, 9, 2 and 3) and cleavage of poly (ADP-ribose) polymerase (PARP), release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria, and the appearance of apoptotic bodies and DNA laddering. Alterations in protein levels of Bcl-2 family members might be involved in the mitochondrial disruption observed. AT514 induced p53 accumulation in wild-type p53 cells but cell death was observed in both deficient and wild-type p53 cells. Our results indicate that AT514 induces cell cycle arrest and apoptosis in breast cancer cells irrespectively of p53 status, suggesting that it might represent a potential new chemotherapeutic agent.  相似文献   

12.
Previous studies on the anticancer activity of protoberberine alkaloids against a variety of cancer cell lines were extended to human tumour HeLa and murine leukemia L1210 cell lines. An attempt was also made to investigate the relationship between the cytotoxic activity of berberine and its molecular mechanism of action. Cytotoxicity was measured in-vitro using a primary biochemical screening according to Oyama and Eagle, and the growth inhibition assay. The in-vitro cytotoxic techniques were complemented by cell cycle analysis and determination of apoptotic DNA fragmentation in L1210 cells. Berberine acted cytotoxically on both tumour cell lines. The sensitivity of leukemia L1210 cells to the berberine was higher than that of HeLa cells. The IC(100) was below 100 microg mL(-1) for HeLa cells and approached a 10 microg mL(-1) limit for the leukemia L1210 cells. For both cell lines the IC(50) was found to be less than 4 microg mL(-1), a limit put forward by the National Cancer Institute (NCI) for classification of the compound as a potential anticancer drug. In L1210 cells treated with 10-50 microg mL(-1) berberine, G(0)/G(1) cell cycle arrest was observed. Furthermore, a concentration-dependent decrease of cells in S phase and increase in G(2)/M phase was detected. In addition, apoptosis detected as sub-G(0) cell population in cell cycle measurement was proved in 25-100 microg mL(-1) berberine-treated cells by monitoring the apoptotic DNA fragmentation (DNA ladder) using agarose gel electrophoresis.  相似文献   

13.
The labdane diterpene sclareol has demonstrated significant cytotoxicity against human tumor cell lines and human colon cancer xenografts. Therefore, there is need to elucidate the mode of action of this compound as very little information is known for the anticancer activity of sclareol and other labdane diterpenes, in general. COMPARE analysis of GI(50) values for a number of human cancer cell lines was initially implicated in an effort to assign a putative mechanism of action to the compound. Sclareol-induced cell cycle arrest and apoptosis were assessed by flow cytometry and Western blot analyses. Finally, the anticancer ability of sclareol in vivo was assessed by using human colon cancer xenograft/mouse models. Sclareol arrested in vitro the growth of p53-deficient (HCT116(p53-/-)) human colon cancer cells and subsequently induced apoptosis by activating both caspases-8 and -9. Intraperitoneal administration of liposome-encapsulated sclareol at the maximum tolerated dose induced a marked growth suppression of HCT116(p53-/-) tumors established as xenografts in immunodeficient NOD/SCID mice. In conclusion, we demonstrate herein that sclareol kills human tumor cells by inducing arrest at the G(1)-phase of the cell cycle followed by apoptosis that involves activation of caspases-8, -9 and -3 via a p53-independent mechanism. These findings suggest that liposome-encapsulated sclareol possesses chemotherapeutic potential for the treatment of colorectal and other types of human cancer regardless of the p53-status.  相似文献   

14.
In this study, we show that the novel synthetic curcumin analog, EF24, induces cell cycle arrest and apoptosis by means of a redox-dependent mechanism in MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells. Cell cycle analysis demonstrated that EF24 causes a G2/M arrest in both cell lines, and that this cell cycle arrest is followed by the induction of apoptosis as evidenced by caspase-3 activation, phosphatidylserine externalization and an increased number of cells with a sub-G1 DNA fraction. In addition, we demonstrate that EF24 induces a depolarization of the mitochondrial membrane potential, suggesting that the compound may also induce apoptosis by altering mitochondrial function. EF24, like curcumin, serves as a Michael acceptor reacting with glutathione (GSH) and thioredoxin 1. Reaction of EF24 with these agents in vivo significantly reduced intracellular GSH as well as oxidized GSH in both the wild-type and Bcl-xL overexpressing HT29 human colon cancer cells. We therefore propose that the anticancer effect of a novel curcumin analog, EF24, is mediated in part by redox-mediated induction of apoptosis.  相似文献   

15.
Germacrone is one of the main bioactive components in the traditional Chinese medicine Rhizoma curcuma. In this study, the anti-proliferative effect of germacrone on the human hepatoma cell lines and the molecular mechanism underlying the cytotoxicity of germacrone were investigated. Treatment of human hepatoma cell lines HepG2 and Bel7402 with germacrone resulted in cell cycle arrest and apoptosis in a dose-dependent manner as measured by MTT assay, flow cytometric and fluorescent microscopy analysis, while much lower effect on normal human liver cell L02 was observed. Flow cytometric analysis revealed that germacrone induced G2/M arrest in the cell cycle progression that was associated with an obvious decrease in the protein expression of cyclin B1 and its activating partner CDK1 with concomitant inductions of p21. Hoechst 33258 and Annexin V/PI staining results showed that the total cell number in apoptosis associated with a dose-dependent up-regulation of Bax and down-regulation of Bcl-2/Bcl-xl was increased. In the meantime, the up-regulation of p53 and reactive oxygen species increase were observed, which suggested that germacrone might be a new potent chemopreventive drug candidate for liver cancer via regulating the expression of proteins related to G2/M cell cycle and apoptosis, and p53 and oxidative damage may play important roles in the inhibition of human hepatoma cells growth by germacrone.  相似文献   

16.
17.
Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.  相似文献   

18.
Phytochemical investigation of the seeds of Thevetia peruviana resulted in the isolation of seven cardiac glycosides (1–7), including two new compounds (1 and 2). Cytotoxicity of them toward cancer cell lines P15 (human lung cancer cell), MGC-803 (human gastric cancer cells), SW1990 (human pancreatic cancer cells), and normal hepatocyte cell LO2 suggested that compound 1 could selectively inhibit the proliferation of cancer cell lines with IC50 from 0.05 to 0.15 μM. Pro-apoptotic activity revealed that it induced the apoptosis of MGC-803 cancer cells in a dose-dependent manner. Meanwhile, treatment of MGC-803 cancer cells with 1 resulted in diminution of pro-caspases 3 and 9 and activation of caspases 3 and 9, while it increased the Bax/Bcl-2 ratio in a dose-dependent manner. These meant that 1 induced the apoptosis of cancer cells by involving the intrinsic apoptotic pathway. In addition, the cell cycle distribution of MGC-803 cancer cells treated by 1 revealed that it could lead to cell cycle arrest at the G2/M phase. Altogether, this study suggested that compound 1 may exhibit anticancer activity by its capability of induction of intrinsic apoptosis and cell cycle arrest at G2/M phase.  相似文献   

19.
摘要 目的:探讨抗CD44单克隆抗体(mAb)A3D8对3种卵巢癌球形体形成细胞增殖和凋亡的影响,并探讨其作用机制。方法:用MTS法检测A3D8对细胞增殖的影响;采用PI染色及流式细胞仪检测A3D8对细胞周期的影响;用Annexin V-FITC/PI凋亡检测试剂盒检测A3D8在细胞凋亡中的作用;用罗丹明123试剂盒检测A3D8对细胞线粒体膜电位的影响;并采用Western Blotting法检测A3D8作用于3种卵巢癌球形体形成细胞后,CDK2、cyclinA、Bcl-2和caspase-3的改变。结果:A3D8可抑制3种卵巢癌球形体形成细胞的增殖,且此抑制作用呈现剂量和时间依赖性;A3D8可在阻滞S期的同时降低G0/G1期比例;A3D8可促进3种细胞凋亡,与DDP联用,细胞凋亡率较单独使用DDP增高;A3D8的处理可导致3种细胞的线粒体膜电位损失,CDK2、cyclinA、Bcl-2蛋白表达下调,caspase-3表达上调。结论:A3D8可能是通过影响p21/CDK2/cyclinA途径阻滞细胞周期达到抑制3种卵巢癌球形体形成细胞增殖的结果,并且可通过线粒体途径促进细胞凋亡。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号