首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 390 毫秒
1.
Summary The metabolic pathway of 3H-noradrenaline released spontaneously and by nerve stimulation was studied in the isolated perfused spleen of the cat. The deaminated glycol, DOPEG, (3,4 dihydroxyphenylglycol) was the main metabolite in spontaneous outflow, accounting for 62.5±1.6% of the total radioactivity (n=13). Of the total increase in radioactive products elicited by nerve stimulation at 5 Hz or 10 Hz around 30% was accounted for by the noradrenaline metabolites, particularly DOPEG and the O-methylated fraction. In the presence of 2.9×10–6 M of cocaine the total overflow of radioactivity induced by stimulation was unchanged but DOPEG formation from released noradrenaline was abolished. These findings indicate that DOPEG formation results from the recapture of the released transmitter by adrenergic nerve endings and subsequent intraneuronal deamination. The total overflow of noradrenaline was reduced by flow-stop while the metabolism of the released transmitter was increased significantly. Cocaine, 2.9×10–6 M, prevented the increase in DOPEG when stimulation was applied under flow-stop conditions. The decrease in noradrenaline overflow induced by flow-stop is partly due to the increase in the metabolism of the released transmitter.  相似文献   

2.
Summary In slices of rat brain cortex preincubated with (–)-3H-noradrenaline, the influence of fentanyl, levorphanol and pethidine on the efflux of tritium was investigated. The spontaneous outflow of tritium was not changed by low, and was accelerated by high concentrations of the drugs. The overflow of tritium evoked by electrical stimulation at 3 Hz was diminished by 10–8–10–7 M fentanyl and by 10–7–10–6 M levorphanol, but was augmented by 10–5 M levorphanol. Naloxone prevented the inhibitory effect of fentanyl and levorphanol. In contrast to fentanyl and levorphanol, pethidine did not decrease, but at concentrations of 10–6–10–5 M greatly increased the stimulation-induced overflow of tritium. However, the increase was abolished, and the stimulation-evoked overflow slightly reduced, after the re-uptake of noradrenaline had been blocked by cocaine. It is concluded that fentanyl, levorphanol and pethidine share with morphine the ability to inhibit the release of transmitter from cerebrocortical noradrenaline neurones evoked by nerve impulses.  相似文献   

3.
Summary In slices of rat brain cortex preincubated with (–)-3H-noradrenaline, the influence of morphine and naloxone on the efflux of tritium was investigated. The spontaneous outflow of tritium was not changed by 10–7–10–5 M morphine and by 10–6–10–4 M naloxone, but was accelerated by 10–4 M morphine. Electrical field stimulation augmented tritium outflow. The overflow evoked per ppulse decreased as the frequency of stimulation was increased from 0.3 to 3 Hz, but remained approximately constant when it was further increased to 10 Hz. At frequencies of 0.3, 1, and 3 Hz, but not at 10 Hz, morphine in concentrations of 10–7–10–5 M depressed the stimulation-induced overflow of tritium. 10–4 M morphine did not influence the overflow induced by stimulation at 0.3 and 1 Hz and increased that evoked by stimulation at 10 Hz. Naloxone (10–6–10–4 M) did not change the response to stimulation. In the presence of 10–4 M naloxone, 10–6 M morphine did not diminish, and 10–5 M morphine even enhanced the stimulation-induced overflow of tritium. The inhibitory effect of 10–6 M morphine was not reduced, after tyrosine hydroxylase had been blocked by -methyltyrosine-methylester. It is concluded that morphine through an action on specific opiate receptors inhibits the release of transmitter from cerebrocortical noradrenergic neurones evoked by nerve impulses. By an action unrelated to opiate receptors, morphine at high concentrations increases the stimulation-induced overflow of noradrenaline, presumably by inhibiting its re-uptake into nerve endings.  相似文献   

4.
Summary This study was designed to investigate the effects of the neuronal uptake inhibitor, cocaine on the adrenergic neuroeffector interaction in the canine saphenous vein. Tissues were incubated with 3H-noradrenaline in control solution or in presence of the cocaine. The tissue content of 3H-noradrenaline and its metabolites was determined after the incubation. As the concentration of cocaine in the incubation medium increased gradually less 3H-noradrenaline and DOPEG were detected in the tissue, while the content of DOMA, NMN, MOPEG and, in particular that of VMA increased; comparable results were obtained with high concentrations of cocaine and desmethylimipramine (DMI). Helical strips of canine saphenous veins were incubated with 3H-noradrenaline and mounted for isometric tension recording and for measurement of the efflux of labelled transmitter and its metabolites. Cocaine, but not DMI, slightly increased the spontaneous efflux of DOPEG, suggesting that cocaine enters the nerve terminals and displaces noradrenaline from its storage sites. During electrical stimulation, cocaine at 3×10–5 mol/l increased the contractile response and the overflow of 3H-noradrenaline, DOMA, NMN and MOPEG and decreased the appearance of DOPEG. Similar results were obtained with DMI (10–6 mol/l) except that it did not increase the overflow of DOMA and MOPEG. During electrical stimulation in presence of DMI, cocaine did not affect the contractile response and decreased the appearance of intact labelled transmitter. Electrical stimulation, cocaine and DMI did not affect the overflow of VMA. The present experiments indicate that in the canine saphenous vein: (1) DOPEG is formed intraneuronally, but DOMA, MOPEG, NMN and VMA extraneuronally; (2) VMA is retained in the tissue much longer than the other metabolites; (3) determination of total 3H-content after incubation with 3H-noradrenaline in presence of inhibitors of neuronal uptake underestimates the degree of inhibition of the neuronal amine carrier; and (4) the quantification of the effect of cocaine on the neuronal uptake of released transmitter is complicated by several other actions of the drug (local anesthetic properties, displacement of stored transmitter, activation of effector cells) and that of the effect of DMI by its inhibitory effect on monoamine oxidase, in particular at extraneuronal sites.Supported in part by grant HL 05883 from the National Institutes of Health  相似文献   

5.
Summary Slices of rat cerebral cortex were preincubated with 10–7 M (-)-3H-noradrenaline, and the outflow of tritium was determined. Oxymetazoline, phentolamine and cocaine did not change the spontaneous efflux. The overflow of tritium evoked by electrical field stimulation was decreased by oxymetazoline, and enhanced by phentolamine, phenoxybenzamine, and cocaine. Oxymetazoline did not counteract the increase of the stimulation-induced overflow caused by cocaine, but strongly antagonized the increase caused by phentolamine and phenoxybenzamine. When the stimulation-induced overflow was large under control conditions (high frequency of stimulation, addition of cocaine), the inhibitory effect of oxymetazoline was diminished. The results indicate that an -receptor-mediated feed-back control of noradrenaline release, previously demonstrated in postganglionic sympathetic nerves, also operates in central noradrenergic neurones.  相似文献   

6.
Summary The effects of ACTH on the release of noradrenaline and the increase of heart rate produced by sympathetic nerve stimulation (1 Hz) were studied in isolated perfused rabbit hearts. ACTH-(1–24) 0.1–100 nmol/l increased the stimulation-evoked overflow of noradrenaline concentration-dependently, reversibly and up to two-fold. The basal outflow of noradrenaline, the basal heart rate and the stimulation-evoked increase in heart rate were not changed. Human ACTH-(1–39) also increased the evoked overflow of noradrenaline. The effect of ACTH-(1–24) 0.3 nmol/l persisted after blockade of -adrenoceptors with propranolol and blockade of neuronal catecholamine uptake by cocaine. ACTH-(1–24) 3 nmol/l did not change the removal of noradrenaline from the perfusion fluid, when hearts were perfused with medium containing 59 nmol/l noradrenaline. The results show that ACTH increases the action potential-evoked release of noradrenaline from cardiac postganglionic sympathetic neurones, probably by activating specific presynaptic ACTH receptors. The high potency of ACTH suggests that these presynaptic receptors may be activated in vivo by circulating ACTH under certain pathophysiological conditions.Send offprint requests to B. Szabo at the above address  相似文献   

7.
1 The effects of cocaine, phentolamine and phenoxybenzamine on neuronal uptake of [(3)H]-noradrenaline and on (3)H-transmitter and noradrenaline overflow elicited by nerve stimulation were determined in the perfused heart of the cat.2 During perfusion with cocaine 3.4 x 10(-7)M, there was a 2-fold increase in transmitter overflow while neuronal uptake of [(3)H]-noradrenaline was inhibited by 31.3 +/- 2.1%.3 After exposure to phenoxybenzamine 8.7 x 10(-7)M for 20 min and washing with drug-free solution for 165 min there was an 8-fold increase in transmitter overflow during nerve stimulation. Under these conditions neuronal uptake of [(3)H]-noradrenaline was inhibited by only 17.5 +/- 5.4%.4 There was no significant change in transmitter overflow or in neuronal uptake of [(3)H]-noradrenaline, 155 min after a 30 min exposure to phentolamine (3.2 x 10(-5)M).5 Perfusion with phentolamine (3.2 x 10(-5)M) before and during exposure to phenoxybenzamine (8.7 x 10(-7)M), prevented the increase in transmitter overflow observed after perfusion with phenoxybenzamine alone.6 Protection by phentolamine against the effects of phenoxybenzamine supports the view that the effects on transmitter release obtained after perfusion with phenoxybenzamine are due to the blockade of presynaptic alpha-adrenoceptors which regulate transmitter release through a negative feed-back mechanism.  相似文献   

8.
Summary Histamine (10(–4 M) induced an increase in the tritium outflow from cat cerebral arteries preloaded with 3H-noradrenaline. Pretreatment with reserpine (3 mg/kg, i.p., total dose) or removal of both superior cervical ganglia two weeks before the experiment abolished that increase. The presence of cocaine or diphenhydramine also prevented the rise in tritium efflux induced by histamine.Histamine (10(–8 M to 10(–3 M) elicited dose-dependent contractions in the isolated posterior communicating artery of the cat which were reduced in the presence of diphenhydramine at all doses except the highest three. The addition of phentolamine to the bath decreased the contractile responses at the doses lower than 10(–6 M. Pretreatment with reserpine or removal of both superior cervical ganglia also diminished the responses at doses of histamine below 10(–6 M and 10(–5 M, respectively. When cocaine was added to the bath there was a decrease in the contraction elicited at all doses except the last one.These results suggest the existence of an indirect adrenergic mechanism in the contractile response to histamine in cat cerebral arteries.  相似文献   

9.
Summary A comparison was made between the effects of cocaine and denervation on the sensitivity to, on the rate of inactivation of, and on the roles played by iproniazid and tropolone in the inactivation of noradrenaline by cat spleen strips. For studying the rate of inactivation of noradrenaline the oil immersion technique was used. Cocaine was used in four different concentrations. In all concentrations did it enhance the sensitivity to noradrenaline. When cocaine was used in concentrations of 10 and 50×10–6 M, the enhancement was significantly higher than that caused by denervation (11.61 and 14.81 vs. 6.42, respectively: p<0.001). Since denervation produces an enhancement of the effect of noradrenaline which is smaller than that caused by cocaine, the blockade of neuronal uptake cannot fully account for all supersensitivity induced by cocaine. On the other hand, cocaine produces no further enhancement of the effect of noradrenaline in denervated strips. It is assumed that cocaine acts in normal (control) preparations by two mechanisms: 1. blockade of neuronal uptake accounting for an enhancement like that caused by denervation (about 6 times); 2. facilitation of the action of noradrenaline by interference with a hypothetical postjunctional structure which depends on the presence of intact adrenergic nerves and which accounts for the remaining degree of enhancement (about 2 times).Strips treated with cocaine (50×10–6 M) required for half-relaxation 7.42 times the time of the controls, whereas denervated strips only required 4.84 times the control time. On the other hand in denervated strips cocaine (50×10–6 M) produced a further 1.55-fold prolongation of the half-relaxation time. Thus, the effect of cocaine on this parameter is concluded to be due primarily to blockade of neuronal uptake and secondarily to another factor, which could be related to uptake2.The influence of cocaine and denervation on the role played by iproniazid and tropolone on the inactivation of noradrenaline was not significantly different; apparently, in this preparation, the monoamine oxidase involved in terminating the action of noradrenaline is predominantly if not entirely situated intraneuronally, whereas catechol-O-methyltransferase seems to be situated intra- and extraneuronally almost in equal proportions.  相似文献   

10.
Summary The aziridinium derivative of the compound N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (az-DSP4) depletes endogenous noradrenaline stores and exerts neurotoxic actions on noradrenergic neurons. These effects are persistent in the central nervous system and transient in the periphery. To determine if transmitter release plays a role in the noradrenaline depletion caused by az-DSP4, the action of the compound was studied in isolated and spontaneously beating rat atria. 1. az-DSP4 enhanced atrial beating rate when present in the incubation medium at concentrations ranging from 10–3 M to 10–4 M but at 10–3 s M decreased that rate below basal levels. 2. Preincubation of atria for 30 min with the noradrenaline uptake blocker desimipramine (DMI, 10–6 M) or with the betablocker propranolol (10–7 M), abolished the positive chronotropic action of az-DSP4. 3. The rate-accelerating effect of az-DSP4 could be prevented by pretreating the rats with reserpine (5 mg/kg i. p. 24 h) or enhanced by pargyline pretreatment (100 mg/kg i. p. 18 h). 4. az-DSP4 stimulated the spontaneous efflux of tritium from the isolated atria previously labeled with 3H-noradrenaline (4 × 10–7 M), an increase that was mainly accounted for by DOPEG. 5. COMT and MAO activities in atria homogenates were inhibited by az-DSP4 in a concentration-dependent manner. However, MAO inhibition did not result in a change of the metabolic pattern as could be expected. 6. The results obtained indicate that az-DSP4 enhances the rate of spontaneous beating of isolated rat atria. The positive chronotropic effect of az-DSP4 requires the interaction of the compound with the noradrenaline uptake system. The mechanism of the accelerating effect of az-DSP4 most probably involves the release of noradrenaline from adrenergic nerve terminals in the atria and its subsequent interaction with adrenergic beta-receptors.Abbreviations DSP4 N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride - az-DSP4 aziridinium derivative of DSP4 - NA noradrenaline - DOMA 3,4-dihydroxy mandelic acid - DOPEG 3,4-dihydroxyphenylethyleneglycol - NMN normetanephrine - OMDA O-methyl deaminated metabolite fraction, comprising vanillyl-mandelic acid (VMA) plus the 3-methoxy derivative of DOPEG (MOPEG) - COMT catechol-O-methyltransferase - MAO monoamineoxidase Send offprint requests to M. E. Landa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号