首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the preparation of dexamethasone in nanoparticle-coated microparticles and the study of the influence of such microencapsulation on drug absorption across Caco-2 cell monolayers. Nanoparticle-coated microparticles were prepared by spray-drying using nanocapsules (NC) or nanospheres (NS) in aqueous suspensions as coating material. Drug contents ranged from 64 to 134mgg(-1), yields between 49% and 67% and moisture content below 2.0%. SEM and AFM analysis demonstrated that the nanoparticle-coated microparticles (20-53microm) show nanostructures on their surface with a similar diameter compared to the aqueous suspensions. The type of nanocoating material had a significant influence on the drug release profile and on the drug permeation across Caco-2 cells: NC-coated microparticles led to a prolonged release and slower transport across Caco-2 cell monolayers, while the NS-coated microparticles showed a faster release and Caco-2 transport compared to uncoated microparticles. The correlation between the amount of drug permeated and the drug released (%) suggests that the drug absorption from such a delivery system is controlled mainly by the release rate rather than by epithelial permeability. Caco-2 transport studies appear to be a useful characterization tool for the development of microparticulate oral controlled release systems.  相似文献   

2.
Principles of the combination of chemically complementary grades of Eudragit? copolymers in peroral, matrix, and reservoir types of solid dosage forms with modified release [tablets, microspheres, (micro)pellets] and their manufacturing technology (including film coatings) are considered. Modified drug release is achieved due to the interaction between reactive groups of copolymer pairs, which controls the drug release process both inside matrices and within multilayers or combined coatings. Analysis of these processes has key significance for developing (meth)acrylate polycomplexes, which could be synthesized in both aqueous and organic media, as new classes of drug carriers for constructing modern peroral drug delivery systems.  相似文献   

3.
Previous studies suggested that an amorphous solid dispersion with a copolymer consisting of both hydrophobic and hydrophilic monomers could improve the dissolution profile of a poorly water-soluble drug compared to the crystalline form. Therefore, this study investigated the influence of the copolymer composition of polyvinylpyrrolidone/vinyl acetate (PVP/VA) on the non-sink in vitro dissolution behavior and in vivo performance of celecoxib (CCX) amorphous solid dispersions. The study showed that the hydrophilic monomer vinylpyrrolidone (VP) was responsible for the generation of CCX supersaturation whereas the hydrophobic monomer vinyl acetate (VA) was responsible for the stabilization of the supersaturated solution. For CCX, there was an optimal copolymer composition around 50–60% VP content where further replacement of VP monomers with VA monomers did not have any biopharmaceutical advantages. A linear relationship was found between the in vitro AUC0-4h and in vivo AUC0-24h for the CCX:PVP/VA systems, indicating that the non-sink in vitro dissolution method applied in this study was useful in predicting the in vivo performance. These results indicated that when formulating a poorly water-soluble drug as an amorphous solid dispersion using a copolymer, the copolymer composition has a significant influence on the dissolution profile and in vivo performance. Thus, the dissolution profile of a drug can theoretically be tailored by changing the monomer ratio of a copolymer with respect to the required in vivo plasma-concentration profile. As this ratio is likely to be drug dependent, determining the optimal ratio between the hydrophilic (dissolution enhancing) and hydrophobic (crystallization inhibiting) monomers for a given drug is imperative.  相似文献   

4.
Aminopeptidase N (APN) has been reported to have a functional role in tumor angiogenesis and repeatedly reported to be over-expressed in human tumors. The melphalan-derived prodrug melphalan-flufenamide (melflufen, previously designated J1) can be activated by APN. This suggests that this alkylating prodrug may exert anti-angiogenic properties, which will possibly contribute to the anti-tumoral activity in vivo. This work presents a series of experiments designed to investigate this effect of melflufen. In a cytotoxicity assay we show that bovine endothelial cells were more than 200 times more sensitive to melflufen than to melphalan, in HUVEC cells the difference was more than 30-fold and accompanied by aminopetidase-mediated accumulation of intracellular melphalan. In the chicken embryo chorioallantoic membrane (CAM) assay it is indicated that both melflufen and melphalan inhibit vessel ingrowth. Two commercially available assays with human endothelial cells co-cultured with fibroblasts (TCS Cellworks AngioKit, and Essen GFP-AngioKit) also illustrate the superior anti-angiogenic effect of melflufen compared to melphalan. Finally, in a commercially available in vivo assay in mice (Cultrex DIVAA angio-reactor assay) melflufen displayed an anti-angiogenic effect, comparable to bevacizumab. In conclusion, this study demonstrates through all methods used, that melphalan-flufenamide besides being an alkylating agent also reveals anti-angiogenic effects in different preclinical models in vitro and in vivo.  相似文献   

5.
Endostatin (ES) can effectively inhibit neovascularization in most solid tumors and has the potential to make oxygen delivery more efficient and increase the efficacy of radiotherapy (RT). With a short half-life, ES is mainly administered systemically, which leads to low intake in tumor tissue and often toxic systemic side effects. In this study, we used hyaluronic acid-tyramine as a carrier to synthesize an ES-loaded hydrogel drug (ES/HA-Tyr) that can be injected locally. ES/HA-Tyr has a longer half-life and fewer systemic toxic side effects, and it exerts a better anti-angiogenic effect and anti-tumor effect with RT. In vitro, ES/HA-Tyr showed sustained release in the release assay and a stronger ability to inhibit the proliferation of human umbilical vascular endothelial cells (HUVECs) in the MTT assay; it exhibited a more potent effect against HUVEC invasion and a stronger anti-angiogenic effect on HUVECs in tube formation. In vivo, ES/HA-Tyr increased local drug concentration, decreased blood drug concentration, and caused less systemic toxicity. Further, ES/HA-Tyr effectively reduced tumor microvessel density, increased tumor pericyte coverage, decreased tumor hypoxia, and increased RT response. ES/HA-Tyr + RT also had increased anti-tumor and anti-angiogenic effects in Lewis lung cancer (LLC) xenograft models. In conclusion, ES/HA-Tyr showed sustained release, lower systemic toxicity, and better anti-tumor effects than ES. In addition, ES/HA-Tyr + RT enhanced anti-angiogenic effects, reduced tumor hypoxia, and increased the efficacy of RT in LLC-bearing mice.  相似文献   

6.
徐兰枝  李亚里  汪淑娟 《中国医药》2012,7(8):1021-1022
目的 探讨子宫动静脉畸形的病因、主要症状、体征,了解诊断和治疗新进展,做到早期诊断、及时治疗以改善预后.方法 对我院收治的1例子宫动静脉畸形病例的临床资料进行回顾性分析,并复习近10年来国内外相关文献.结果 本例患者经子宫动脉栓塞治疗后,阴道流血停止,术后痊愈出院,随访未复发.结论 子宫动静脉畸形临床少见,有先天性和获得性两种,病因不同,以阴道不规则、大量流血为主要临床表现,彩色多普勒超声、CT、MRI等可协助诊断.子宫动脉栓塞是希望保留生育功能女性有效的治疗方法.  相似文献   

7.
The objective of this study was to develop polymeric nanospheres (NPs) that are able to selectively target the activated vascular endothelium and to deliver co-encapsulated anti-angiogenic agents for improved treatment efficacy in inflammatory diseases with an angiogenic component. We evaluated a novel poly(d,l)-lactide (PLA)-based polymer, grafted with a synthetic ligand specific for selectin (PLA-g-SEL), for the preparation of functionalized NPs. The NPs were produced according to a double emulsion-solvent diffusion/evaporation method, allowing the co-encapsulation of hydrophilic and lipophilic drugs.Incorporation of the functionalized polymer enhanced the internalization of fluorescein-labeled NPs by lipopolysaccharide-activated vascular endothelial cells relative to control NPs, as evidenced by confocal laser scanning microscopy and quantitative fluorescence measurements. Two anti-angiogenic agents, endostatin and paclitaxel, were co-loaded in the functionalized NPs. Respective drug loadings were optimized by adjusting polymer composition, as well as by the microemulsion technique.NPs loaded with either of the chosen drugs or with a combination of them were tested for their anti-angiogenic efficacy in human umbilical vascular endothelial cell (HUVEC) culture in vitro and rat aorta tissue culture ex vivo models. An enhanced anti-proliferative effect on HUVECs and heightened anti-angiogenic action on rat aorta ring cultures was observed for the loaded drugs compared to the free molecules. Moreover, combined loaded treatments were found to be more potent, evoking additive and even synergetic outcomes (at lower doses) greater than the corresponding single-loaded treatments in inhibiting new vessels sprouting in rat aortic rings.  相似文献   

8.
The aim of this study was to develop microparticles containing nanoparticles (composite microparticles) for prolonged drug delivery with reduced burst effect in vitro and in vivo. Such composite microparticles were prepared with hydrophobic and biodegradable polymers [poly(ε-caprolactone), poly(lactic-co-glycolic) acid]. Ibuprofen was chosen as the model drug, and microparticles were prepared by the extraction technique with ethyl acetate as the solvent. Nanoparticles and microparticles and an ibuprofen solution (Pedea®) were administered subcutaneously at the dose of 1 mg of ibuprofen per kg to overnight-fasted rats (male Wistar). Composite microparticles showed prolonged ibuprofen release and less burst effect when compared to simple microparticles (without nanoparticles inside) or nanoparticles both in vitro (PBS buffer) and in vivo. Moreover, ibuprofen was still detected in the plasma after 96 h with composite microparticles. Consequently, it has been demonstrated that composite microparticles were able to reduce burst release and prolong the release of ibuprofen for a long period of time.  相似文献   

9.
To control the release rate and mask the bitter taste, cetirizine dihydrochloride (CedH) was entrapped within chitosan nanoparticles (CS-NPs) using an ionotropic gelation process, followed by microencapsulation to produce CS matrix microparticles using a spray-drying method. The aqueous colloidal CS-NPs dispersions with a drug encapsulation efficiency (EE) of <15%, were then spray dried to produce a powdered nanoparticles-in-microparticles system with an EE of >70%. The resultant spherical CS microparticles had a smooth surface, were free of organic solvent residue and showed a diameter range of 0.5∼5 μm. The in vitro drug release properties of CedH encapsulated microparticles showed an initial burst effect during the first 2 h. Drug release from the matrix CS microparticles could be retarded by the crosslinking agent pentasodium tripolyphosphate or the wall material. The technique of ‘ionotropic gelation’ combined with ‘spray-drying’ could be applicable for preparation of CS nanoparticlesin-microparticles drug delivery systems. CS-NPs based microparticles might provide a potential micro-carrier for oral administration of the freely water-soluble drug — CedH.  相似文献   

10.
5-Fluorouracil (5-FU) is an antimetabolite with a broad-spectrum activity against solid tumors. However, its very short half-life in plasma circulation greatly limited the in vivo antitumor efficacy and clinical application. The current work aimed to solve this problem as well as to increase 5-FU biodistribution to tumor by covalently conjugating 5-FU to a biocompatible, non-toxic and non-immunogenic drug carrier – N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer. The in vitro cytotoxicity, in vivo biodistribution and therapeutic efficacy of HPMA copolymer–5-FU conjugates (P-FU) were reported. Cytotoxicity was evaluated by using a serial of tumor cells (A549, CT-26, Hela, HepG2 cells and 5-FU resistant HepG2 cells). In vivo biodistribution and therapeutic efficacy were investigated in Kunming mice-bearing hepatoma 22 (H22). Results indicated that P-FU could increase the cytotoxicity of 5-FU in Hela, HepG2 and 5-FU resistant HepG2 cells, while it decreases the cytotoxicity of 5-FU in A549 and CT-26. Both in vitro release profile in plasma and biodistribution study showed that P-FU significantly prolonged the drug plasma circulation time. P-FU also showed an over 3-fold larger area under the concentration–time curve (AUC) in tumor when compared with free drug. Therapeutic evaluation also demonstrated that the treatment with P-FU displayed stronger inhibition of the tumor growth when compared with that of control group (physiologic saline) or 5-FU group at the same dose. All the results suggested that P-FU could increase cytotoxicity of 5-FU in certain cancer cell lines, prolong 5-FU circulation time in vivo, enhance 5-FU distribution to tumor and improve therapeutic efficacy. Therefore, HPMA copolymer is a potential carrier for 5-FU for the effective treatment of cancer.  相似文献   

11.
Solid lipid microparticles were investigated as a taste-masking approach for a lipophilic weak base in a suspension. The idea was that the drug concentration in the aqueous phase of a suspension might be reduced by its partitioning into the solid lipid particles. Loratadine, as a model drug, was used to prepare Precirol® ATO 5 microparticles by a Micromixer. The effects of three process variables: drug loading, PVA concentration and water/lipid ratio on the microparticle size, encapsulation efficiency, surface appearance, in-vitro release and drug partitioning in a suspension were studied. Loratadine release was slow in simulated saliva and very fast at the pH of stomach. In suspension of loratadine lipid microparticles, drug was released into the aqueous phase to the same concentration as in a drug suspension. Therefore, the usefulness of these microparticles for taste-masking in liquids is limited. However, they might be useful for taste-masking in solid dosage forms.  相似文献   

12.
Chemosensitization strategies use the administration of one drug or agent to render cancer cells more susceptible to a second agent. Usually this involves enhanced drug metabolism, improvement of drug uptake or blockage of resistance mechanisms. Alteration of the susceptibility of cancer cells to apoptosis, the process of individual cell death by which many chemotherapeutic drugs act, shows particular promise for therapy in the future, and is the focus of this review. The dependence of cancer cells on non-neoplastic cells to form solid tumors allows anti-angiogenic therapy to be used in conjunction with chemotherapy to increase the therapeutic index. Chemosensitization strategies are set to become increasingly important in cancer therapy, allowing rational design of synergistic drug combinations at an earlier stage in drug development.  相似文献   

13.
崔世民  陈俊华 《天津医药》1998,26(8):463-465
目的:讨论8例脊髓血管畸形影像学特点和治疗。方法:经选择性脊髓血管造影证实髓内动静脉畸形4例,髓周动静脉瘘4例,全部患者表现为进行性脊髓损坏。采用血管内直接栓塞法治疗,栓塞 Ivalon(栓塞粒)。结果:6例临床症状缓解,2例无明显改变。结论:血管造影是诊断脊髓篾管畸形的可靠方法,栓塞治疗效果良好。  相似文献   

14.
In this study, we synthesized and characterized two methoxy poly(ethylene glycol)-block-poly(caprolactone) (MePEG-b-PCL) amphiphilic diblock copolymers, both based on MePEG with a molecular weight of 5000 g/mol (114 repeat units) and PCL block lengths of either 19 or 104 repeat units. Nanoparticles were formed from these copolymers by a nanoprecipitation and dialysis technique. The MePEG114-b-PCL19 copolymer was water soluble and formed micelles that had a hydrodynamic diameter of 40 nm at all copolymer concentrations tested, and displayed a relatively low core microviscosity. The practically water insoluble MePEG114-b-PCL104 copolymer formed nanoparticles with a larger hydrodynamic diameter, which was dependent on copolymer concentration, and possessed a higher core microviscosity than the MePEG114-b-PCL19 micelles, characteristic of nanospheres. The micelles solubilized a maximum of 1.6% w/w of the hydrophobic anticancer agent, paclitaxel (PTX), and released 92% of their drug payload over 7 days, as compared to the nanospheres, which solubilized a maximum of 3% w/w of PTX and released 60% over the same period of time. Both types of nanoparticles were found to be hemocompatible, causing only minimal hemolysis and no changes in plasma coagulation times as compared to control. Upon in vitro incubation in human plasma, PTX solubilized by micelles had a plasma distribution similar to free drug. The majority of PTX was associated with the lipoprotein deficient plasma (LPDP) fraction, which primarily consists of albumin and alpha-1-acid glycoprotein. In contrast, nanospheres were capable of retaining more of the encapsulated drug with significantly less PTX partitioning into the LPDP fraction.  相似文献   

15.
A novel polymeric material, poly(δ-valerolactone-co-allyl-δ-valerolactone) (PVL-co-PAVL), was used to manufacture microparticles (MPs) for sustained drug delivery. PVL-co-PAVL MPs were formulated using a modified oil-in-water approach, followed by a UV-initiated cross-linking process. Prepared MPs had a smooth spherical morphology and cross-linking of the copolymer was found to improve the integrity and thermal stability of the MPs. Paclitaxel (PTX) was successfully loaded into the MPs at a high drug loading capacity, using a post-loading swelling-equilibrium method. In vitro evaluation showed that the PVL-co-PAVL MPs provide sustained release of PTX, which exhibited first-order release kinetics. A subsequent pilot pharmacokinetic study was carried out on the PTX-loaded PVL-co-PAVL MPs. During this study, serum levels of PTX were monitored following subcutaneous administration of the MPs to Sprague-Dawley rats. Overall, the in vivo release of PTX from the MPs was lower than expected based on the in vitro release studies. Detectable serum levels of PTX suggest that sustained release of drug was achieved in vivo. Minimal changes in subcutaneous tissue were observed at the site of injection. Future studies will further examine the localized and systemic distribution of drug following administration in this new polymer-based MP system.  相似文献   

16.
The demand for sublingual tablets has been growing during the previous decades especially for drugs with extensive hepatic first-pass metabolism. Vinpocetine, a widely used neurotropic agent, has low oral bioavailability due to its poor aqueous solubility and marked first-pass metabolism. Accordingly, the aim of this work was to develop tablets for the sublingual delivery of vinpocetine. Initially, the feasibility of improving vinpocetine’s poor aqueous solubility by preparing kneaded solid systems of the drug with β-Cyclodextrin and hydroxy acids (citric acid and tartaric acid) was assessed. The solid system with improved solubility and dissolution properties was incorporated into porous tablets that rapidly disintegrate permitting fast release of vinpocetine into the sublingual cavity. The pores were induced into these tablets by directly compressing the tablets’ excipients with a sublimable material, either camphor or menthol, which was eventually sublimated leaving pores. The obtained results demonstrated that the tablets prepared using camphor attained sufficient mechanical strength for practical use together with rapid disintegration and dissolution. In vivo absorption study performed in rabbits indicated that the sublingual administration of the proposed porous tablets containing vinpocetine solid system with β-Cyclodextrin and tartaric acid could be useful for therapeutic application.  相似文献   

17.
颌骨中心性动静脉畸形的栓塞与手术治疗(附1例报告)   总被引:3,自引:0,他引:3  
目的探讨颌骨中心性动静脉畸形进行栓塞与手术治疗的效果。方法对1例颌骨中心性动静脉畸形行栓塞结合刮治手术患者,随访30个月,观察其治疗效果。结果栓塞后术中出血量明显减少,单纯刮治维持了原有的面容,随访30个月无复发。结论栓塞加刮治为颌骨中心性动静脉畸形的首选治疗方法。  相似文献   

18.
This study aimed to prepare and evaluate rifampicin microparticles for the lung delivery of rifampicin as respirable powder. The microparticles were prepared using chitosan by the spray-drying method and evaluated for aerodynamic properties and pulmonary drug absorption. To control the drug release, tripoly-phosphate in different concentrations 0.6, 0.9, 1.2, and 1.5 was employed to get a sustained drug release profile. The microparticles were evaluated for drug loading, % entrapment efficiency, tapped density, morphological characteristics, and in vitro drug release studies. Aerosol properties were determined using the Andersen cascade impactor. Porous microparticles with particle sizes (d0.5) less than 10 μm were obtained. The entrapment of rifampicin in microparticles was up to 72%. In vitro drug release suggested that the crosslinked microparticles showed sustained release for more than 12 hrs. The drug release rate was found to be decreased as the TPP concentration was increased. The microparticles showed a fine particle fraction in the range of 55–63% with mass median aerodynamic diameter (MMAD) values below 3 μm. The in vivo pulmonary absorption of the chitosan microparticles suggested a sustained drug release profile up to 72 hrs with an elimination rate of 0.010 per hr. The studies revealed that the spray-dried porous microparticles have suitable properties to be used as respirable powder in rifampicin delivery to the lungs.  相似文献   

19.
20.
A novel method for preparing the PLGA nanospheres with hydrophilic surface has been designed and characterized. Because of good solubility of tetraglycol in water, PLGA (poly(lactide-co-glycolide)) nanospheres were formed by spraying the PLGA/tetraglycol solution into water. The size of PLGA nanospheres was manipulated by changing the concentration of PLGA/tetraglycol solution. Based on the hydrophobic interaction between PLGA and poly(propylene oxide) domain of F-127 (one of Pluronics, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, F-127-coated PLGA nanospheres was prepared to enhance the stability of PLGA nanospheres in the aqueous media. For the application as a drug delivery vehicle, it was characterized by measuring the loading amount, the encapsulation efficiency and the release pattern of drug. Paclitaxel used as a potent anti-cancer drug was selected as a model drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号