首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的基于Nrf2-ARE信号通路探讨异甘草酸镁对雷公藤甲素损伤L-02细胞的保护作用及相关机制。方法体外培养正常人肝L-02细胞,通过免疫荧光技术检测异甘草酸镁(60μmol·L^-1)对雷公藤甲素(80nmol·L^-1)损伤L-02细胞中Nrf2核转移的影响;采用Western blotting测定细胞核中Nrf2及细胞中细胞色素P450 3A4(CYP3A4)、多药耐药相关蛋白2(multidrug resistance associated protein 2,MRP2)和胆盐输出泵(bile salt export pump,BSEP)的蛋白表达。结果雷公藤甲素对L-02细胞核中Nrf2具有诱导作用(P<0.01),并促进Nrf2核内转移;异甘草酸镁预处理组较雷公藤甲素组降低L-02细胞核中Nrf2的表达(P<0.01);异甘草酸镁预处理后对雷公藤甲素损伤L-02细胞中CYP3A4、MRP2和BSEP蛋白表达具有诱导作用(P<0.01)。结论异甘草酸镁可减轻雷公藤甲素对L-02细胞造成的损伤作用,其机制可能与诱导细胞核中Nrf2以及细胞中CYP3A4、MRP2和BSEP受体有关。  相似文献   

2.
3.
4.
Triptolide (TP) has been shown to have anti-inflammatory, immunosuppressive, anti-fertility and anti-neoplastic activity. However, its clinical use was restricted to some extent due to its serious toxicity. The possible mechanism for triptolide-induced hepatotoxicity was related to reactive oxygen species (ROS) inducing lipid peroxidation and DNA damage. The development of controlled release delivery strategies could lead to significant advantages in the clinical use of these drugs to decreasing the toxicity. Thus, the present study was focused on the preparation and some characterization of triptolide-loaded solid lipid nanoparticle (SLN) and the measurements of anti-inflammatory activities and the hepatotoxicity of TP-SLN. The carrageenan-induced rat paw edema experiment indicated that the anti-inflammatory activities of TP-SLN were stronger than those of free triptolide. Orally administration of TP-SLN 0.2 or 0.4 mg/kg per day did not cause mortality within the period of observation. In contrast, free triptolide at different doses had caused partial death. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were significantly elevated in the free triptolide-treated group whereas they did not significantly change in TP-SLN-treated mice. The free triptolide increased malondialdehyde (MDA) level and decreased activities of superoxide dismutase (SOD) and total glutathione peroxidase (GSH-Px) in the liver homogenates. However, these phenomena were not found in TP-SLN-treated mice. The results of histopathological evaluation revealed a protective effect of SLN on vacuolation, edema, inflammatory infiltration and necrosis caused by triptolide. Furthermore, TP-SLN did not change Bcl/Bax protein ratio or decrease FasL expression in liver cells. These results suggest that SLN delivery system can enhance the anti-inflammatory activity of triptolide meanwhile has a protective effect against triptolide-induced hepatotoxicity. The toxicity of TP-SLN to other tissues is under investigation.  相似文献   

5.
6.
Tang L  Ye L  Lv C  Zheng Z  Gong Y  Liu Z 《Toxicology letters》2011,205(1):47-54
Triptolide, the primary active component of Tripterygium wilfordii Hook F, has various pharmacological activities but also a narrow therapeutic window. Cytochrome P450s are proposed to be responsible for the hydroxylation of triptolide in vitro and CYP3A induction by dexamethasone can increase the metabolism of triptolide and decrease the hepatotoxicity in rat. However, triptolide-induced toxicity has not been investigated in an animal model having a suppression of P450 activities. Here we compared the toxicological effects and toxicokinetics of triptolide between liver-specific cytochrome P450 reductase (CPR) knockout (KO) mice (abolished hepatic P450 activities) and wild-type (WT) control mice after a single oral gavage of triptolide at 0.5 mg/kg or 1.0 mg/kg. A low toxic dose of triptolide at 0.5 mg/kg for WT mice resulted in severe toxicities including death in KO mice. Changes in serum biochemistry, hematology and histopathology further indicated much more severe toxicities in multiple organs in KO mice compared to WT mice after triptolide administration. The mono-hydroxylated metabolites of triptolide detected in the blood of WT mice were undetectable in KO mice, accompanied by much higher triptolide levels in the blood and tissues including the liver, kidney, and spleen determined by LC-MS/MS. Taken together, our results confirmed that inactivation of hepatic P450s abolishes the ability in metabolism of triptolide in the liver, subsequently resulting in an increase in bioavailability and toxicity of triptolide in vivo. It is suggested that P450 inhibition/inactivation might pose a significant health risk in the clinic use of triptolide.  相似文献   

7.
8.
Anthocyanins have been shown to exert anti-proliferative, anti-inflammatory effects and anti-carcinogenic activity. In the present work, we investigated the protective effects of anthocyanin fraction (AF) from purple sweet potato on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in HepG2 cell line and in rat liver. The result showed that the oral pretreatment of AF before t-BHP treatment significantly lowered the serum levels of the hepatic enzyme markers (ALT and AST) and reduced oxidative stress of the liver by evaluation of malondialdehyde and glutathione. Histopathological evaluation of the livers also revealed that AF reduced the incidence of liver lesions. The in vitro result showed that AF significantly reduced t-BHP-induced oxidative injury, as determined by cell cytotoxicity, intracellular glutathione content, lipid peroxidation, reactive oxygen species (ROS) levels, and caspases activation. Also, AF up-regulated antioxidant enzymes including heme oxygenase-1 (HO-1), NAD(P)H:quinone reductase, and glutathione S-transferase. Moreover, AF induced Nrf2 nuclear translocation and Akt and ERK1/2 activation, pathways that are involved in inducing Nrf2 nuclear translocation. Taken together, these results suggest that the protective effects of AF against t-BHP-induced hepatotoxicity may, at least in part, be due to its ability to scavenge ROS and to regulate the antioxidant enzyme HO-1 via the Akt and ERK1/2/Nrf2 signaling pathways.  相似文献   

9.
10.
To investigate the hepatotoxic potential of tienilic acid in vivo, we administered a single oral dose of tienilic acid to Sprague-Dawley rats and performed general clinicopathological examinations and hepatic gene expression analysis using Affymetrix microarrays. No change in the serum transaminases was noted at up to 1000 mg/kg, although slight elevation of the serum bile acid and bilirubin, and very mild hepatotoxic changes in morphology were observed. In contrast to the marginal clinicopathological changes, marked upregulation of the genes involved in glutathione biosynthesis [glutathione synthetase and glutamate-cysteine ligase (Gcl)], oxidative stress response [heme oxygenase-1 and NAD(P)H dehydrogenase quinone 1] and phase II drug metabolism (glutathione S-transferase and UDP glycosyltransferase 1A6) were noted after 3 or 6 h post-dosing. The hepatic reduced glutathione level decreased at 3-6 h, and then increased at 24 or 48 h, indicating that the upregulation of NF-E2-related factor 2 (Nrf2)-regulated gene and the late increase in hepatic glutathione are protective responses against the oxidative and/or electrophilic stresses caused by tienilic acid. In a subsequent experiment, tienilic acid in combination with l-buthionine-(S,R)-sulfoximine (BSO), an inhibitor of Gcl caused marked elevation of serum alanine aminotransferase (ALT) with extensive centrilobular hepatocyte necrosis, whereas BSO alone showed no hepatotoxicity. The elevation of ALT by this combination was observed at the same dose levels of tienilic acid as the upregulation of the Nrf2-regulated genes by tienilic acid alone. In conclusion, these results suggest that the impairment of glutathione biosynthesis may play a critical role in the development of tienilic acid hepatotoxicity through extensive oxidative and/or electrophilic stresses.  相似文献   

11.
This study was conducted to investigate the potential effects of diallyl disulfide (DADS) on carbon tetrachloride (CCl4)‐induced acute hepatotoxicity and to determine the molecular mechanisms of protection offered by DADS in rats. DADS was administered orally at 50 and 100 mg/kg/day once daily for 5 consecutive days prior to CCl4 administration. The single oral dose of CCl4 (2 mL/kg) caused a significant elevation in serum aspartate and alanine aminotransferase activities, which decreased upon pretreatment with DADS. Histopathological examinations showed extensive liver injury, characterized by extensive hepatocellular degeneration/necrosis, fatty changes, inflammatory cell infiltration, and congestion, which were reversed following pretreatment with DADS. The effects of DADS on cytochrome P450 2E1 (CYP2E1), the major isozyme involved in CCl4 bioactivation, were also investigated. DADS pretreatment resulted in a significant decrease in CYP2E1 protein levels in dose‐dependent manner. In addition, CCl4 caused a decrease in protein level of cytoplasmic nuclear factor E2‐related factor 2 (Nrf2) and suppression of nuclear translocation of Nrf2 concurrent with downregulation of detoxifying phase II enzymes and a decrease in antioxidant enzyme activities. In contrast, DADS prevented the depletion of cytoplasmic Nrf2 and enhanced nuclear translocation of Nrf2, which, in turn, upregulated antioxidant and/or phase II enzymes. These results indicate that the protective effects of DADS against CCl4‐induced hepatotoxicity possibly involve mechanisms related to its ability to induce antioxidant or detoxifying enzymes by activating Nrf2 and block metabolic activation of CCl4 by suppressing CYP2E1. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 538–548, 2015.  相似文献   

12.
目的: 探讨PKCδ在丹酚酸B(SalB)抗对乙酰氨基酚(APAP)肝损伤中的作用。方法: 通过MTT法、细胞内还原型GSH含量测定、细胞LDH溢出量测定检测SalB抗APAP肝损伤作用。Western Blot法检测SalB对Nrf2核移位的影响。应用PKCδ抑制剂或siRNA干扰技术,探索PKCδ在SalB抗APAP肝损伤中的作用,Western Blot法检测PKCδ表达及Nrf2激活。结果: SalB可明显减轻APAP造成的HepG2细胞损伤,同时激活PKCδ,促进Nrf2核移位。PKCδ选择性阻断剂Rottlerin可减弱以上保护作用。PKCδ敲除明显减弱SalB对Nrf2核移位的诱导作用。结论: SalB可减轻APAP所致肝细胞损伤,其机制与SalB通过PKCδ激活Nrf2通路有关。  相似文献   

13.
Eriodictyol-7-O-glucoside, a flavonoid isolated from Dracocephalum rupestre, is among the most potent free radical scavenger. In the present study, we identified eriodictyol-7-O-glucoside as a novel nuclear factor E2-related factor 2 (Nrf2) activator using a high-throughput cellular screening method. This compound activated Nrf2 signaling pathway and was able to stabilize Nrf2 by delaying Nrf2 degradation, resulting in accumulation of Nrf2 protein and activation of the Nrf2-dependent protective response. Recent studies have suggested that activation of Nrf2 pathway would confer protection against cisplatin-induced toxicity. The protective role of eriodictyol-7-O-glucoside in cisplatin-induced toxicity was investigated in a human renal mesangial cell line, HRMC. Cotreatment of HRMC cells with eriodictyol-7-O-glucoside significantly improved cell survival under cisplatin exposure. These findings demonstrated the feasibility of using natural compounds targeting Nrf2 as a therapeutic approach to subvert the side effects of cisplatin in normal cells.  相似文献   

14.
In the present study, we explore the protective effects of Citrus aurantium L. extract (CAE) against acute and chronic CCl4-induced hepatotoxicity. The quantitative analysis of CAE was performed using HPLC-UV to determine the nobiletin content was approximately 27%. For the acute model, the male ICR mice were orally treated with water, silymarin (positive control, 200 mg/kg) and CAE (50 and 200 mg/kg) for 3 days prior to CCl4 (1 mL/kg, 50% v/v in olive oil) IP injection. For the chronic model (n = 6/group), the mice were treated with each treatment for 28 consecutive days and CCl4 (1 mL/kg, 20%) was injected twice a week. In both the acute and chronic models, the CCl4 alone treated group showed histopathologic alterations with a significantly increase in serum hepatic enzyme levels together with a disrupted anti-oxidative status. In contrast, the CAE treatments restored pathologic alterations and recovered the oxidative status by enhancing antioxidant enzymes and reducing lipid peroxidation levels. Furthermore, CAE enhanced nuclear factor E2-related factor 2 (Nrf2) and its related cytoprotective signals, including NAD(P)H quinone oxidoreductase 1, UDP-glucuronosyltransferase, and γ-glutamylcysteine synthetase. Taken together, the present study demonstrates that CAE exerts a protective effect against CCl4-induced hepatotoxicity with its anti-oxidant, anti-inflammatory, and anti-apoptotic activity.  相似文献   

15.
The present study aims to investigate the impacts and mechanisms of silymarin on paraquat (PQ)‐induced lung injury in vivo and in vitro. In in vivo experiments, a total of 32 male Sprague‐Dawley (SD) rats were randomly divided into four groups. The rats were killed on day 3. Histopathological changes in lung tissue were examined using HE and Masson's trichrome staining. Biomarkers of neutrophil activation, pulmonary oedema, pulmonary fibrosis, lung permeability and oxidative stress were detected. Several proinflammatory mediators and antioxidant related proteins were measured. In in vitro experiments, A549 cells were transfected with Nrf2 special siRNA to investigate the roles of Nrf2. The results show that silymarin administration abated PQ‐induced lung histopathologic changes, decreased inflammatory cell infiltration and lung wet weight/dry weight (W/D) ratio, suppressed myeloperoxidase (MPO) activity and nitric oxide (NO)/inducible nitric oxide synthases (iNOS) expression, downregulated hydroxyproline (HYP) levels, reduced total protein concentration and proinflammatory mediator release, and improved oxidative stress (malondialdehyde, MDA; superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GSH‐Px) in lung tissue and serum. Meanwhile, treatment with silymarin upregulated the levels of nuclear factor‐erythroid‐2‐related factor 2 (Nrf2), heme oxygenase‐1 (HO‐1) and NAD(P)H:quinone oxidoreductase‐1(NQO1). However, the addition of Nrf2 siRNA reduced the expression of Nrf2‐mediated antioxidant protein HO‐1 and thus reversed the protective effects of silymarin against oxidative stress and inflammatory response. These results suggest that silymarin may exert protective effects against PQ‐induced lung injury. Its mechanisms were associated with the Nrf2‐mediated pathway. Therefore, silymarin may be a potential therapeutic drug for lung injury.  相似文献   

16.
17.
Oxidative stress is closely associated with acetaminophen (APAP)-induced toxicity. Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced tissue injury. This study investigated whether sulforaphane (SFN), as a HO-1 inducer, plays a protective role against APAP hepatotoxicity in vitro and in vivo. Pretreatment of primary hepatocyte with SFN induced nuclear factor E2-factor related factor (Nrf2) target gene expression, especially HO-1 mRNA and protein expression, and suppressed APAP-induced glutathione (GSH) depletion and lipid peroxidation, which eventually leads to hepatocyte cell death. A comparable effect was observed in mice treated with APAP. Mice were treated with 300 mg/kg APAP 30 min after SFN (5 mg/kg) administration and were then sacrificed after 6 h. APAP alone caused severe liver injuries as characterized by increased plasma AST and ALT levels, GSH depletion, apoptosis, and 4-hydroxynonenal (4-HNE) formations. This APAP-induced liver damage was significantly attenuated by pretreatment with SFN. Furthermore, while hepatic reactive oxygen species (ROS) levels were increased by APAP exposure, pretreatment with SFN completely blocked ROS formation. These results suggest that SFN plays a protective role against APAP-mediated hepatotoxicity through antioxidant effects mediated by HO-1 induction. SFN has preventive action in oxidative stress-mediated liver injury.  相似文献   

18.
Abstract

Amiodarone (AMD) is a hepatotoxic drug that has been widely used as a class III antiarrhythmic drug. Because, to date, only a few kinds of protectants are able to reduce AMD hepatotoxicity, this article utilized gel-entrapped rat hepatocytes to screen effective protectants from a series of herbal compounds for their effects against AMD-induced toxicity. Herbal compounds, including matrine, silibinin, glycyrrhizic acid, schisandrin B, epigallocatechin gallate and anisodamine, were cotreated with AMD to assess their protective effect, whereas vitamin E, which has been shown to be protective in rats, was selected as a control. It was found that vitamin E, as with its function in rats, provided the best protection in gel-entrapped rat hepatocytes, whereas silibinin, a major component of silymarin, could largely reduce AMD-induced hepatotoxicity, performing a similar function as silymarin in rats. The results illustrated that gel-entrapped hepatocytes may reflect the protective effects of drugs and serve as a reliable model for screening hepatoprotectants. Moreover, matrine, a widely used monomer of the traditional Chinese medicine, Sophora flavescens, for treatment of arrhythmia, was evidenced to show some effective protections against AMD hepatotoxicity. Taken together, gel-entrapped rat hepatocytes may provide a platform for screening effective candidates from the herbal component library.  相似文献   

19.
Microcystins (MCs), the products of blooming algae Microcystis, are waterborne environmental toxins that have been implicated in the development of liver cancer, necrosis, and even fatal intrahepatic bleeding. Alternative protective approaches in addition to complete removal of MCs in drinking water are urgently needed. In our previous work, we found that sulforaphane (SFN) protects against microcystin-LR (MC-LR)-induced cytotoxicity by activating the NF-E2-related factor 2 (Nrf2)-mediated defensive response in human hepatoma (HepG2) and NIH 3T3 cells. The purpose of this study was to investigate and confirm efficacy the SFN-induced multi-mechanistic defense system against MC-induced hepatotoxicity in an animal model. We report that SFN protected against MC-LR-induced liver damage and animal death at a nontoxic and physiologically relevant dose in BALB/c mice. The protection by SFN included activities of anti-cytochrome P450 induction, anti-oxidation, anti-inflammation, and anti-apoptosis. Our results suggest that SFN may protect mice against MC-induced hepatotoxicity. This raises the possibility of a similar protective effect in human populations, particularly in developing countries where freshwaters are polluted by blooming algae.  相似文献   

20.
1. The hepatic protective effects of the phenolic compounds 7,8-dihydroxyflavone, morin, silymarin, caffeic acid and chlorogenic acid on bromobenzene-induced toxicity in mice were studied.

2. Morin, caffeic acid and chlorogenic acid at an oral dose of 200mg/kg failed to influence hepatotoxicity in vivo, while 7,8-dihydroxyflavone exhibited efficacy and potency higher than those of the reference compound silymarin.

3. 7,8-Dihydroxyflavone, an antioxidant and hepatoprotective agent in vitro, decreased serum glutamate-pyruvate transaminase levels (SGPT) in a dose-related manner, and at 200mg/kg inhibited bromobenzene-induced glutathione depletion in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号