首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
F 11782 (2",3"-bis-pentafluorophenoxyacetyl-4",6"ethylidene-beta-D-glucoside of 4'-phosphate-4'-dimethylepipodophyllotoxin-2N-methyl glucamine salt), is a novel dual catalytic inhibitor of topoisomerases I and II characterised by marked in vivo antitumour activity, which also proved cytotoxic and exhibited DNA damaging properties in vitro. Mechanisms associated with this cell killing by F 11782 have been examined in P388 leukaemia cells. Treatment with F 11782 resulted in a dose-dependent DNA fragmentation coupled with the characteristic morphological features of apoptosis. Apoptosis-inducing concentrations of F 11782 induced caspases-3/7 activation accompanied by proteolytic cleavage of poly(ADP-ribose)-polymerase, which could be inhibited by the caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde. In addition, F 11782-induced apoptosis in P388 cells was associated with an increased expression of the pro-apototic Bax protein, without significant changes in the level of the anti-apoptotic Bcl-2 protein, and with modification at the mitochondrial membrane function. These results indicate that F 11782 leads to apoptosis through a caspase-3/7 dependent mechanism and suggest that the so-called "mitochondrial pathway" is implicated in F 11782-induced apoptosis in P388 cells.  相似文献   

2.
F 11782, or 2',3'-bis-pentafluorophenoxyacetyl-4',6'-ethylidene-beta-D-glucoside of 4'-phosphate-4'-dimethylepipodophyllotoxin 2-N-methyl glucamine salt, a novel dual catalytic inhibitor of topoisomerases I and II, was identified as a potent inhibitor of nucleotide excision repair (NER) by screening procedures using the in vitro 3D (DNA damage detection) assay. F 11782 was then shown predominantly to inhibit the incision rather than the repair synthesis step, using two new methodologies derived from this 3D assay, effectively ruling out any inhibition of polymerases delta/var epsilon. Moreover, data from two other in vitro assays showed an absence of any effect of F 11782 on: (i) the DNA damage binding of the XPA-RPA complex, and (ii) on SV40 large T-antigen helicase activity. Therefore, the inhibitory activity of F 11782 on NER may involve an inhibition of the ERCC1-XPF or XPG endonuclease activity. Moreover, inhibition of DNA repair by F 11782 was confirmed in human A549 cells by monitoring unscheduled DNA synthesis following mechlorethamine treatment. Such an inhibition provides an explanation for the highly synergistic cytotoxicity observed against cultured A549 lung tumour cells, when F 11782 was combined with cross-linking agents, such as cisplatin or mitomycin C. These results emphasise the unique mode of action of this novel molecule in inhibiting NER and provide a basis for its evaluation in clinical trials in combination with DNA cross-linking agents.  相似文献   

3.
F 11782 is a newly identified catalytic inhibitor of topoisomerases I and II, without any detectable interaction with DNA. This study aimed to establish whether its catalytic inhibition of topoisomerase II was mediated by mechanisms similar to those identified for the bisdioxopiperazines. In vitro combinations of F 11782 with etoposide resulted in greater than additive cytotoxicity in L1210 cells, contrasting with marked antagonism for combinations of etoposide with either ICRF-187 or ICRF-193. All three compounds caused a G2/M blockade of P388 cells after an 18-h incubation, but by 40 h polyploidization was evident only with the bisdioxopiperazines. Gel retardation data revealed that only F 11782, and not the bisdioxopiperazines, was capable of completely inhibiting the DNA-binding activity of topoisomerase II, confirming its novel mechanism of action. Furthermore, unlike ICRF-187 and ICRF-193, the cytotoxicity of F 11782 appeared mediated, at least partially, by DNA damage induction in cultured GCT27 human teratoma cells, as judged by a fluorescence-enhancement assay and monitoring p53 activation. Finally, the major in vivo antitumor activity of F 11782 against the murine P388 leukemia (i.v. implanted) and the B16 melanoma (s.c. grafted) contrasted with the bisdioxopiperazines' general lack of activity. Overall, F 11782 and the bisdioxopiperazines appear to function as quite distinctive catalytic topoisomerase II inhibitors.  相似文献   

4.
5.
F 11782, a novel epipodophylloid, proved a potent inhibitor of the catalytic activities of both topoisomerases I and II. Unlike classical inhibitors such as camptothecin or etoposide, F 11782 did not stabilise cleavable complexes induced by either topoisomerases I or II nor did it preferentially inhibit the religation step of the catalytic cycle of either enzyme. F 11782 neither intercalated DNA nor bound in its minor groove, and showed only weak inhibition of the ATPase activity associated with topoisomerase II. F 11782 appeared to act by inhibiting the binding of topoisomerases I and II to DNA in a manner dependent both on drug and enzyme concentrations, via a mechanism not previously described or shared by other known topoisomerase 'poisons' or inhibitors. In contrast, F 11782 had only a weak effect or none at all on various other DNA-interacting enzymes. In conclusion, F 11782, as a non-intercalating, specific catalytic inhibitor of both topoisomerases I and II with an original mechanism of action, may be considered to represent the first of a new class of topoisomerase-interacting agents.  相似文献   

6.
Our previous studies have shown that murine fibroblast cells, in which PARP-1 gene was inactivated by gene disruption, are extremely sensitive to triazoloacridone compound C-1305, an inhibitor of DNA topoisomerase II with unusual properties. Here, we show that pharmacological inhibition of PARP-1 activity by its inhibitor compound NU1025, sensitizes human cervical carcinoma HeLa cells to compound C-1305 compared to treatment with drug alone. Cytotoxic effect of drug/NU1025 of other topoisomerase II inhibitors varied depending on the dose of PARP-1 inhibitor. Increased cytotoxicity of topoisomerase II inhibitor/NU1025 combinations was attributable to the re-activation of the p53 pathway in drug-treated HeLa cells. This lead to a more stringent cell cycle checkpoint control during G2 and M and enhanced cell death by mitotic catastrophe induced by drug/NU1025 combinations. Interestingly, treatment of HeLa cells with NU1025 alone also increased p53 expression. This effect is, at least in part, related to the inhibition of proteasome activity by drug treatments. Together, our results show that concomitant inhibition of topoisomerase II and PARP-1 leads to the synergistic cytotoxic effect toward tumor cells that may be important for combination therapies with NU1025 and topoisomerase II inhibitors. We also confirmed our earlier work and show the important role of PARP-1 activity in the maintenance of the G2 arrest induced by DNA damaging drugs. Finally, based on our studies we propose that NU1025 and possibly other inhibitors of PARP-1 may be used as non-genotoxic agents to activate p53 in tumor cells with non-functional p53 pathways.  相似文献   

7.
Acridine derivatives, such as amsacrine, represent a well known class of multi-targeted anti-cancer agents that generally interfere with DNA synthesis and inhibit topoisomerase II. But in addition, these tricyclic molecules often display secondary effects on other biochemical pathways including protein metabolism. In order to identify novel anti-cancer drugs, we evaluated the mechanism of action of a novel series of bis- and tetra-acridines. As expected, these molecules were found to interact with DNA and inhibit the topoisomerase II-mediated DNA decatenation. Interestingly when tested on human tumour cells either sensitive (HL-60) or resistant (HL-60/MX2) to topoisomerase II inhibitors, these molecules proved equicytotoxic against the two cell lines, suggesting that they do not only rely on topoisomerase II inhibition to exert their cytotoxic effects. In order to identify alternative targets, we tested the capacity of acridines 1-9 to inhibit the proteasome machinery. Four tetra-acridines inhibited the proteasome in vitro, with IC(50) values up to 40 times lower than that of the reference proteasome inhibitor lactacystin. Moreover, unlike peptide aldehydes used as reference inhibitors for the proteasome, these new acridine compounds demonstrated a good selectivity towards the proteasome, when tested against four unrelated proteases. A cellular assay based on the degradation of a proteasome protein substrate indicated that at least two of the tetra-acridines maintained this proteasome inhibition activity in a cellular context. This is the first report of tetra-acridines that demonstrate dual topoisomerase II and proteasome inhibition properties. This new dual activity could represent a novel anti-cancer approach to circumvent certain forms of tumour resistance.  相似文献   

8.
A novel amidine analogue of melphalan (AB4) was compared to its parent drug, melphalan in respect to cytotoxicity, DNA and collagen biosynthesis in MDA-MB-231 and MCF-7 human breast cancer cells. It was found that AB4 was more active inhibitor of DNA and collagen synthesis as well more cytotoxic agent than melphalan. The topoisomerase I/II inhibition assay indicated that AB4 is a potent catalytic inhibitor of topoisomerase II. Data from the ethidium displacement assay showed that AB4 intercalated into the minor-groove at AT sequences of DNA. The greater potency of AB4 to suppress collagen synthesis was found to be accompanied by a stronger inhibition of prolidase activity and expression compared to melphalan. The phenomenon was related to the inhibition of beta(1)-integrin and IGF-I receptor mediated signaling caused by AB4. The expression of beta(1)-integrin receptor, as well as Sos-1 and phosphorylated MAPK, ERK(1) and ERK(2) but not FAK, Shc, and Grb-2 was significantly decreased in cells incubated for 24h with 20 microM AB4 compared to the control, not treated cells, whereas in the same conditions melphalan did not evoke any changes in expression of all these signaling proteins, as shown by Western immunoblot analysis. These results indicate the amidine analogue of melphalan, AB4 represent multifunctional inhibitor of breast cancer cells growth and metabolism.  相似文献   

9.
The present study was designed to evaluate the effects of novel and recognised compounds at human recombinant A(2B) adenosine receptors expressed in Chinese hamster ovary (hA(2B)CHO), in human embryonic kidney 293 (hA(2B)HEK-293) and at endogenous A(2B) receptors in human mast cells (HMC-1). Saturation binding experiments performed using the new high affinity A(2B) adenosine radioligand [(3)H]-N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetra hydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide ([(3)H]-MRE 2029F20) revealed a single class of binding sites in hA(2B)CHO, hA(2B)HEK-293 and HMC-1 cells with K(D) (nM) of 1.65+/-0.18, 2.83+/-0.34, 2.62+/-0.27 and B(max) (fmol/mg protein) of 36+/-4, 475+/-50 and 128+/-15, respectively. The pharmacological profile of new compounds, determined in inhibition binding experiments in hA(2B)HEK-293 cells using [(3)H]-MRE 2029F20, showed a rank order of potency typical of the A(2B) receptors with K(i) values in the range 3.2-28nM. In functional assays, recognised agonists and antagonists were studied by evaluating their capability to modulate the cAMP production in hA(2B)CHO and in HMC-1 cells. Novel compounds were able to decrease NECA-stimulated cAMP production in hA(2B)CHO and in HMC-1 cells showing a high potency. New compounds were also able to inhibit cAMP levels in the absence of NECA and in the presence of forskolin stimulation in hA(2B)CHO and in HMC-1 cells. In HEK-293 cells MRE 2029F20 reduced cAMP basal levels with an IC(50) value of 2.9+/-0.3nM. These results suggest that novel compounds are antagonists with an inverse agonist activity in recombinant and native human A(2B) receptors.  相似文献   

10.
The bisdioxopiperazines such as (+)-(S)-4,4'-propylenedi-2,6-piperazinedione (dexrazoxane; ICRF-187), 1,2-bis(3,5-dioxopiperazin-1-yl)ethane (ICRF-154), and 4,4'-(1,2-dimethyl-1,2-ethanediyl)bis-2,6-piperazinedione (ICRF-193) are agents that inhibit eukaryotic topoisomerase II, whereas their ring-opened hydrolysis products are strong iron chelator. The clinically approved analog ICRF-187 is a pharmacological modulator of topoisomerase II poisons such as etoposide in preclinical animal models. ICRF-187 is also used to protect against anthracycline-induced cardiomyopathy and has recently been approved as an antidote for alleviating tissue damage and necrosis after accidental anthracycline extravasation. This dual modality of bisdioxopiperazines, including ICRF-187, raises the question of whether their pharmacological in vivo effects are mediated through interaction with topoisomerase II or via their intracellular iron chelating activity. In an attempt to distinguish between these possibilities, we here present a transgenic mouse model aimed at identifying the contribution of topoisomerase IIalpha to the effects of bisdioxopiperazines. A tyrosine 165 to serine mutation (Y165S) in topoisomerase IIalpha, demonstrated previously to render the human ortholog of this enzyme highly resistant toward bisdioxopiperazines, was introduced at the TOP2A locus in mouse embryonic stem cells by targeted homologous recombination. These cells were used for the generation of transgenic TOP2A(Y165S/+) mice, which were demonstrated to be resistant toward the general toxicity of both ICRF-187 and ICRF-193. Hematological measurements indicate that this is most likely caused by a decreased ability of these agents to induce myelosuppression in TOP2A(Y165S/+) mice, highlighting the role of topoisomerase IIalpha in this process. The biological and pharmacological implications of these findings are discussed, and areas for further investigations are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号