首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of shikonin derivatives ( 1 – 13 ) that were acylated selectively by various thiophene or indol carboxylic acids at the side chain of shikonin were synthesized, and their biological activities were also evaluated as potential tubulin inhibitors. Among them, compound 3 ((R)‐1‐(5,8‐dihydroxy‐1,4‐dioxo‐1,4‐dihydronaphthalen‐2‐yl)‐4‐methylpent‐3‐enyl 3‐(1H‐indol‐3‐yl)propanoate) and compound 8 ((R)‐1‐(5,8‐dihydroxy‐1,4‐dioxo‐1,4‐dihydronaphthalen‐2‐yl)‐4‐methylpent‐3‐enyl 2‐(thiophen‐3‐yl)acetate) exhibited good antiproliferative activity of A875 (IC50 = 0.005 ± 0.001 μm , 0.009  ± 0.002 μm ) and HeLa (IC50 = 11.84 ± 0.64 μm , 4.62  ± 0.31 μm ) cancer cell lines in vitro, respectively. Shikonin (IC50 = 0.46 ± 0.002 μm , 4.80 ± 0.48 μm ) and colchicine (IC50 = 0.75 ± 0.05 μm , 17.79 ± 0.76 μm ) were used as references. Meanwhile, they also showed the most potent growth inhibitory activity against tubulin (IC50 of 3.96  ± 0.13 μm and 3.05 ± 0.30 μm , respectively), which were compared with shikonin (IC50 =  15.20 ± 0.25 μm ) and colchicine (IC50 = 3.50 ± 0.35 μm ). Furthermore, from the results of flow cytometer, we found compound 3 can really inhibit HeLa cell proliferation and has low cell toxicity. Based on the preliminary results, compound 3 with potent inhibitory activity in tumor growth may be a potential anticancer agent.  相似文献   

2.
Twenty‐six novel isosteviol derivatives coupled with two types of nitric oxide (NO) donors (furoxans and NONOates) were synthesized and screened for cytotoxic activities against four human cancer cell lines with sunitinib as the positive control. The results showed that seven furoxan‐based derivatives ( 8a , 8b , 8c , 8d , 8e , 9e , and 9f ) exhibited desirable cytotoxic activities, while NONOate‐based derivatives displayed poor potency because of unstability. Compared with sunitinib, compounds 8a and 8e were more active on all tested cell lines, especially in HCT116 ( 8a , IC50 = 0.48 ± 0.02 μm ; 8e , IC50 = 0.94 ± 0.01 μm ); compounds 8b and 8d were more potent on HCT116 (IC50 = 3.39 ± 0.06 and 3.29 ± 0.03 μm ), HepG2 (IC50 = 1.05 ± 0.03 and 5.37 ± 0.08 μm ), and SW620 (IC50 = 1.33 ± 0.02 and 4.11 ± 0.05 μm ) cell lines, and 8c exhibited higher activities on HepG2 cells with an IC50 = 4.76 ± 0.14 μm . NO‐releasing experiment of compounds 8a – e , 17a , 18a , 19a , and 21a reminded us that NO‐releasing amount of this series of isosteviol derivatives positively correlates with their cytotoxic activities.  相似文献   

3.
King cobra (Ophiophagus hannah) venom l ‐amino acid oxidase (LAAO), a heat‐stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF‐7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04 ± 0.00 and 0.05 ± 0.00 μg/mL, respectively, after 72‐hr treatment. In comparison, its cytotoxicity was about 3–4 times lower when tested against human non‐tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF‐7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18 ± 0.03 and 0.63 ± 0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7‐amino‐actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO‐treated tumour cells than in their non‐tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase‐3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours.  相似文献   

4.
A new series derived from 4‐(2‐chloroacetyl)‐1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3H‐pyrazol‐3‐one was synthesized, characterized and its pharmacological activity toward aromatase enzyme inhibition was screened and compared to the reference native ligand letrozole. The most active compound of the series was 16 , showing IC50 value of 0.0023 ± 0.0002 μm compared to letrozole with IC50 of 0.0028 ± 0.0006 μm . In addition, compounds 26 and 36 exhibit good inhibition activities close to letrozole with IC50 values 0.0033 ± 0.0001 and 0.0032 ± 0.0003 μm , respectively. Moreover, molecular docking studies were conducted to support the findings.  相似文献   

5.
A series of new 1‐phenylsulphonyl‐2‐(1‐methylindol‐3‐yl)‐benzimidazole derivatives were designed, synthesized and evaluated as potential inhibitors of tubulin polymerization and anthropic cancer cell lines. Among them, compound 33 displayed the most potent tubulin polymerization inhibitory activity in vitro (IC50 = 1.41 μM) and strong antiproliferative activities against A549, Hela, HepG2 and MCF‐7 cell lines in vitro with GI50 value of 1.6, 2.7, 2.9 and 4.3 μM, respectively, comparable with the positive control colchicine (GI50 value of 4.1, 7.2, 9.5 and 14.5 μM, respectively) and CA‐4 (GI50 value of 2.2, 4.3, 6.4 and 11.4 μM, respectively). Simultaneously, we evaluated that compound 33 could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Immunofluorescence microscopy also clearly indicated compound 33 a potent antimicrotubule agent. Docking simulation showed that compound 33 could bind tightly with the colchicine‐binding site and act as a tubulin inhibitor. Three‐dimensional‐QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent tubulin assembling inhibitory activity in the future.  相似文献   

6.
7.
Synthesis of novel set of forty semicarbazide/thiosemicarbazide hybrids inspired from marine bromopyrrole alkaloids is reported. Biological screening of these hybrids against a panel of five human cancer cell lines identified a number of hits endowed with interesting cytotoxicity profile. Compounds 5c and 5e (IC50 = 0.03 μm ), 5t (IC50 = 0.03 μm ), 4s (IC50 = 0.07 μm ), and 5n (IC50 = 0.01 μm ) displayed maximum cytotoxicity toward hormone‐dependent breast cancer cells MCF 7 , hepatic cancer cells WRL 68 , colon cancer cells Ca CO 2 and mouth and oral cancer cells KB 403 , respectively. The most active hits were further investigated for their potential to inhibit MMP‐2 and MMP‐12. Compound 5e showed maximum activity (IC50 = 1.8 μm ) toward MMP‐2. Further, we preformed anti‐invasive assay on the most active compounds, where Ca CO 2 tumor cell migration was significantly decreased (77.9%) by hybrid 5e . The non‐toxicity toward human VERO cells (IC50 = 83.1 to 231.8 μm ) indicated the selectivity of most active hits ( 5c , 5e , 5t and 5n ) toward cancer cells.  相似文献   

8.
The selectivity of certain benzophenones and their carbonyl N‐analogues was investigated towards the human GSTP1‐1 allozymes A, B and C involved in MDR. The allozymes were purified from extracts derived from E. coli harbouring the plasmids pEXP5‐CT/TOPO‐TA‐hGSTP1*A, pOXO4‐hGSTP1*B or pOXO4‐hGSTP1*C. Compound screening with each allozyme activity indicated three compounds with appreciable inhibitory potencies, 12 and 13 with P1‐1A 62% and 67%, 11 and 12 with P1‐1C 51% and 70%, whereas that of 15 fell behind with P1‐1B (41%). These findings were confirmed by IC50 values (74–125 μm ). Enzyme inhibition kinetics, aided by molecular modelling and docking, revealed that there is competition with the substrate CDNB for the same binding site on the allozyme (Ki(13/A) = 63.6 ± 3.0 μm , Ki(15/B) = 198.6 ± 14.3 μm , and Ki(11/C) = 16.5 ± 2.7 μm ). These data were brought into context by an in silico structural comparative analysis of the targeted proteins. Although the screened compounds showed moderate inhibitory potency against hGSTP1‐1, remarkably, some of them demonstrated absolute isoenzyme and/or allozyme selectivity.  相似文献   

9.
Organisms belonging to the genus Dendronephthya are among a group of marine invertebrates that produce a variety of terpenoids with biofunctional properties. Many of these terpenoids have been proven effective as anticancer drugs. Here, we report the antiproliferative effect of 3β‐hydroxy‐Δ5‐steroidal congeners against the proliferation of HL‐60 human leukemia cells and MCF‐7 human breast cancer cells. The sterol‐rich fraction (DGEHF2‐1) inhibited the growth of HL‐60 and MCF‐7 cells with IC50 values of 13.59 ± 1.40 and 29.41 ± 0.87 μg ml–1 respectively. Treatment with DGEHF2‐1 caused a dose‐dependent increase in apoptotic body formation, DNA damage and the sub‐G1 apoptotic cell population. Moreover, DGEHF2‐1 downregulated the expression of Bcl‐xL while upregulating Bax, caspase‐9, and PARP cleavage in both HL‐60 and MCF‐7 cells. The steroid fraction was found to act via the mitochondria‐mediated apoptosis pathway. Identification of the sterols was performed via gas chromatography–tandem mass spectrometry analysis. Studying the mechanism of the anticancer effect caused by these sterol derivatives could lead to the identification of other natural products with anticancer properties.  相似文献   

10.
N‐substituted hydroxynaphthalene imino‐oxindole derivatives ( 5a–g ) were emerged as the inhibitors of the phosphoinositide 3‐kinase (PI3K), which is a crucial regulator of apoptosis or programmed cell death. Electron donor‐/acceptor‐substituted indole‐imine ( 5a–g ) was achieved, and the structures were elucidated by FTIR, 1H NMR, 13C NMR and HRMS. Inhibition potency of PI3Ks was assessed by competitive ELISA. Subsequently, an anticancer activity against breast cancer (MCF‐7) cell lines was evaluated. In both activities, compounds 5c , 5d and 5f showed most potent activities. Percentage inhibition for anticancer activity was 78.22 ± 1.02 ( 5c ) and 78.98 ± 1.08 ( 5f ), and the IC50 was 2.02 ± 0.92 μm ( 5c ) and 1.98 ± 0.18 μm ( 5f ). Compounds 5a and 5g were found inactive for both activities, and rest all showed a moderate activity. To get more insight into the binding mode and inhibitor binding affinity, 5a–g were docked into the active site of PI3Ks p110α (PDB ID: 2ENQ). Results suggested that the hydrophobic interactions in the binding pockets of PI3Ks conquered affinity of the most favourable binding ligands ( 5c and 5f : inhibitory constant (ki) = 102.4 and 128.23 nm ). The SAR studies demonstrate the efficiency of 5a–g as the PI3Ks precise inhibitors with the impending to treat various cancers.  相似文献   

11.
A series of novel bisquinoline compounds comprising N1‐(7‐chloroquinolin‐4‐yl) ethane‐1,2‐diamine and 7‐chloro‐N‐(2‐(piperazin‐1‐yl)ethyl)quinolin‐4‐amine connected with 7‐chloro‐4‐aminoquinoline containing various amino acids is described. We have bio‐evaluated the compounds against both chloroquine‐sensitive (3D7) and chloroquine‐resistant (K1) strains of Plasmodium falciparum in vitro. Among the series, compounds 4 and 7 exhibited 1.8‐ and 10.6‐fold superior activity as compared to chloroquine (CQ; IC50 = 0.255 ± 0.049 μm ) against the K1 strain with IC50 values 0.137 ± 0.014 and 0.026 ± 0.007 μm , respectively. Furthermore, compound 7 also displayed promising activity against the 3D7 strain (IC50 = 0.024 ± 0.003 μm ) of P. falciparum when compared to CQ. All the compounds in the series displayed resistance factor between 0.57 and 4.71 as against 51 for CQ. These results suggest that bisquinolines can be explored for further development as new antimalarial agents active against chloroquine‐resistant P. falciparum.  相似文献   

12.
A new series of arylisoxazole–oxindole derivatives ( 6a–r ) were synthesized and evaluated for their antiproliferative activity against human cancer cell lines including non‐small cell lung (A549), cervical (HeLa), breast (MCF‐7), and prostate (DU‐145) cancer cell lines. The synthesized compounds ( 6a–r ) demonstrated excellent to moderate cytotoxicity with IC50 values ranging from 0.82 to 3.69 μm . Some new compounds ( 6m–r ) exhibited profound cytotoxicity better or similar to positive control. More particularly, the compound 6q possesses donating substituent like methoxy group presented at 5‐position on D ring exhibited remarkable antiproliferative activity against A‐549 (lung cancer) with an IC50 value 0.82 μm . Further studies to determine the mechanistic aspects of these conjugates are under progress.  相似文献   

13.
Eudesmols are naturally occurring sesquiterpenoid alcohols that present cytotoxic effect to cancer cells. Herein, all eudesmol isomers displayed cytotoxicity to different tumour cell lines. α‐Eudesmol showed IC50 values ranging from 5.38 ± 1.10 to 10.60 ± 1.33 μg/mL for B16‐F10 and K562 cell lines, β‐eudesmol showed IC50 values ranging from 16.51 ± 1.21 to 24.57 ± 2.75 μg/mL for B16‐F10 and HepG2 cell lines, and γ‐eudesmol showed IC50 values ranging from 8.86 ± 1.27 to 15.15 ± 1.06 μg/mL for B16‐F10 and K562 cell lines, respectively. In addition, in this work, we studied the mechanisms of cytotoxic action of eudesmol isomers (α‐, β‐ and γ‐eudesmol) in human hepatocellular carcinoma HepG2 cells. After 24‐hr incubation, HepG2 cells treated with eudesmol isomers presented typical hallmarks of apoptosis, as observed by morphological analysis in cells stained with haematoxylin–eosin and acridine orange/ethidium bromide. None of eudesmol isomers caused membrane disruption at any concentration tested. Moreover, eudesmol isomers induced loss of mitochondrial membrane potential and an increase in caspase‐3 activation in HepG2 cells, suggesting the induction of caspase‐mediated apoptotic cell death. In conclusion, the eudesmol isomers herein investigated are able to reduce cell proliferation and to induce tumour cell death by caspase‐mediated apoptosis pathways.  相似文献   

14.
A series of novel isolongifoleno[7,8‐d]thiazolo[3,2‐a]pyrimidine derivatives ( 4a – 4x ) were synthesized from isolongifolanone according fragment‐based design strategy, and their anticancer activity against human aortic smooth muscle cells (HASMC), human breast cancer (MCF‐7) cells, human cervical cancer (HeLa) cells, and human liver cancer (HepG2) cells were investigated. Results of the anticancer activity illustrated that most of the compounds showed potent antitumor activity and compound 4i proved to be the most active derivative with IC50 values of 0.33 ± 0.24 (for MCF‐7 cells), 0.52 ± 0.13 (for HeLa cells), and 3.09 ± 0.11 μM (for HepG2 cells), respectively. Moreover, we assessed the effects of 4i on cell apoptosis, cell cycle distribution, mitochondrial membrane potential, and reactive oxygen species (ROS) generation. The results indicated that compound 4i altered mitochondrial membrane potential and produced ROS leading to cell apoptosis of MCF‐7 cells in a dose‐dependent manner, however, without affecting cell cycle progression. These findings suggested that 4i was an effective compound and provided a promising candidate for anticancer drugs.  相似文献   

15.
A series of novel indazole‐based diarylurea derivatives targeting c‐kit were designed by structure‐based drug design. The derivatives were prepared, and their antiproliferative activities were evaluated against human colon cancer HCT‐116 cell line and hepatocellular carcinoma PLC/PRF/5 cell line. The antiproliferative activities demonstrated that six of nine compounds exhibited comparable activities with sorafenib against HCT‐116. The structure–activity relationship (SAR) analysis indicated that the indazole ring part tolerated different kinds of substituents, and the N position of the central pyridine ring played key roles in antiproliferative activity. The SAR and interaction mechanisms were further explored using molecular docking method. Compound 1i with N‐(2‐(pyrrolidin‐1‐yl)ethyl)‐carboxamide possessed improved solubility, 596.1 ng/ml and best activities, IC50 at 1.0 μm against HCT‐116, and 3.48 μm against PLC/PRF/5. It is a promising anticancer agent for further development.  相似文献   

16.
A variety of 5‐(2H‐tetrazol‐5‐yl)‐4‐thioxo‐2‐(substituted phenyl)‐4,5‐dihydro‐1,3‐oxazin‐6‐ones ( 3a–k ) have been synthesized from 1,3‐oxazine‐5‐carbonitriles ( 2a–k ). The protocol represents an efficient, facile, and novel route from easily available precursors to unprecedented structures that share 1,3‐oxazine and tetrazole motifs of utmost value. All the synthesized compounds ( 3a–k ) were evaluated for their inhibitory potential against mushroom tyrosinase. Results revealed that all examined 1,3‐oxazine‐tetrazole hybrids exhibited significant tyrosinase inhibitory activity while compound 3d having 2‐bromophenyl moiety was the most potent among the series with IC50 value 0.0371 ± 0.0018 μM as compared to the reference kojic acid (IC50 = 16.832 ± 0.73 μM). Inhibitory kinetics showed that compound 3d behaves as a competitive inhibitor. The molecular docking analysis was performed against target protein to investigate the binding mode. Moreover, compounds 3j and 3k displayed superior DPPH radical scavenging activity than other analogues.  相似文献   

17.
A one‐pot method for the synthesis of structural type urease inhibitors, 2‐amino‐1,3,4‐oxadiazoles, was developed. The structures of the compounds were established using spectroanalytical techniques and unambiguously confirmed by single‐crystal X‐ray analysis of compound 3o . The synthesized compounds were tested against jack beans urease, and most of the compounds ( 3c , 3g , 3j , 3k , 3n , 3r – 3v ) were found more active than the standard. The most potent compound ( 3u ) had an IC50 value of 6.03 ± 0.02 μm as compared to the IC50 value of the standard (thiourea; 22.0 ± 1.2 μm ). The prominent urease inhibition activity of these compounds may serve as an important finding in the development of less toxic and more potent antiulcer drugs. The compounds were also investigated against four bacterial strains, and some of the compounds ( 3g and 3r ) were found more potent than the standard drug (ciprofloxacin) against all the tested strains. The MIC value for compound 3g was 0.156 μmol/mL against the tested bacterial strains.  相似文献   

18.
A new series of potential Akt1 inhibitors with indole scaffold were designed and synthesized. The antiproliferative activity against PC‐3 cell line and enzyme inhibitory activity against Akt1 were evaluated. Among them, some compounds showed much more potent antiproliferative activity and stronger Akt1 inhibitory activity compared to the positive control of GSK690693. In particular, compound 19b exhibited the most potent inhibitory activity against Akt1 with inhibition rate of 70.3% at a concentration of 10 nm . Furthermore, compound 19b could dose dependently reduce the phosphorylation of the downstream GSK3β protein in the PC‐3 cell line and displayed fivefold higher antiproliferative activity against PC‐3 cell line with IC50 value of 3.1 ± 0.1 μm than positive control (15.5 ± 0.4 μm ). Herein, compound 19b may serve as a promising lead for further optimization and development of novel Akt1 inhibitors based on an indole scaffold.  相似文献   

19.
Herein, we report the synthesis and screening of 4′‐((5‐benzylidene‐2,4‐dioxothiazolidin‐3‐yl)methyl)biphenyl‐2‐carbonitrile analogs 11(a–j) as bacterial peptide deformylase (PDF) enzyme inhibitors. The compounds 11b (IC50 value = 139.28 μm ), 11g (IC50 value = 136.18 μm ), and 11h (IC50 value = 131.65 μm ) had shown good PDF inhibition activity. The compounds 11b (MIC range = 103.36–167.26 μg/mL), 11g (MIC range = 93.75–145.67 μg/mL), and 11h (MIC range = 63.61–126.63 μg/mL) had also shown potent antibacterial activity when compared with standard ampicillin (MIC range = 100.00–250.00 μg/mL). Thus, the active derivatives were not only PDF inhibitors but also efficient antibacterial agents. To gain more insight on the binding mode of the compounds with PDF enzyme, the synthesized compounds 11(a–j) were docked against PDF enzyme of Escherichia coli and compounds exhibited good binding properties. The results suggest that this class of compounds has potential for development and use in future as antibacterial drugs.  相似文献   

20.
A series of novel noncovalent glycine/β-alanine anilide derivatives possessing 2-chloronaphthoquinone structure as a pharmacophoric unit were designed, synthesized, and evaluated for their antiproliferative and antiproteasomal activities against MCF-7 cell line, in vitro. According to biological activity results, all the target compounds showed antiproliferative activity in the range of IC50 = 7.10 ± 0.10–41.08 ± 0.14 μM and most of them exhibited inhibitory efficacy with varying ratios against the three catalytic subunits (β1, β2, and β5) presenting caspase-like (C-L), trypsin-like (T-L) and chymotrypsin-like (ChT-L) activities of proteasome. The antiproteasomal activity evaluations revealed that compounds preferentially inhibited the β5 subunit compared with β1 and β2 subunits of the proteasome. Among the compounds, compounds 7 and 9 showed the highest antiproliferative activity with an IC50 value of 7.10 ± 0.10 and 7.43 ± 0.25 μM, respectively. Additionally, compound 7 displayed comparable potency to PI-083 lead compound in terms of β5 antiproteasomal activity with an inhibition percentage of 34.67 at 10 μM. This compound showed an IC50 value of 32.30 ± 0.45 μM against β5 subunit. Furthermore, molecular modeling studies of the most active compound 7 revealed key interactions with β5 subunit. The results suggest that this class of compounds may be beneficial for the development of new potent proteasome inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号