首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several lines of evidence implicate NMDA receptor dysfunction in the cognitive deficits of schizophrenia, suggesting that pharmacological manipulation of the NMDA receptor may be a feasible therapeutic strategy for treatment of these symptoms. Although direct manipulation of regulatory sites on the NMDA receptor is the most obvious approach for pharmacological intervention, targeting the G-protein coupled metabotropic glutamate (mGlu) receptors may be a more practical strategy for long-term regulation of abnormal glutamate neurotransmission. Heterogeneous distribution, both at structural and synaptic levels, of at least eight subtypes of mGlu receptors suggests that selective pharmacological manipulation of these receptors may modulate glutamatergic neurotransmission in a regionally and functionally distinct manner. Two promising targets for improving cognitive functions are mGlu5 or mGluR2/3 receptors, which can modulate the NMDA receptor-mediated signal transduction by pre- or postsynaptic mechanisms. Preclinical studies indicate that activation of these subtypes of mGlu receptors may be an effective strategy for reversing cognitive deficits resulting form reduced NMDA receptor mediated neurotransmission.  相似文献   

2.
Glutamate exerts its effects through binding and activation of two classes of specific receptors: ionotropic (iGluRs) and metabotropic (mGluRs). Group I mGluR includes mGluR1 and mGluR5 subtypes, group II includes mGluR2 and mGluR3 subtypes and group III includes the subtypes mGluR 4, 6, 7 and 8. Glutamate and its receptors are found in all key hypothalamic areas critically involved in reproduction and neuroendocrine function. To date, considerable data support an important role for iGluRs in the control of neuroendocrine function; however, the role of mGluRs as regulators of hypothalamic-pituitary function has not been clearly elucidated. mGluRs could be exerting a fine tune on the release of hypothalamic factors that regulate hormone release such as Substance P, GABA, alpha-MSH and CRH. Group II mGluR exert a direct inhibitory effect on anterior pituitary prolactin and GH secretion. Moreover, some group II mGluR agonists, like LY 354,740 and LY 379,268, can modulate PRL secretion from the anterior pituitary through their actions as dopamine receptor agonists. Evidence suggests a role for group III mGluR subtypes in stress-related behavioral disorders. Several reports indicate that selective ligands for mGluR subtypes have potential for the treatment of a wide variety of neurological and psychiatric disorders, including depression, anxiety disorders, schizophrenia, epilepsy and Alzheimer's disease among others. Since converging lines of evidence suggest a role for mGluRs subtypes in neuroendocrine regulation of hormone secretion, mGluRs neuroendocrine actions must be taken in consideration to insure proper treatment of these diseases. Moreover, discovery of selective agonists provides an opportunity to investigate the physiological role of mGluR subtypes and to directly test the neuroendocrine actions of mGluRs. Finally, mGluRs selective agonists may have an impact in the treatment of conditions involving chronic stress, such as depression and anxiety disorders, since they regulate neuroendocrine stress circuits involving the HPA axis and stress-sensitive hormones such as oxytocin and prolactin. This review aims to provide a survey of our current understanding of the effects of mGluR activation on neuroendocrine function.  相似文献   

3.
Membrane currents of layer V pyramidal cells in slices of the rat prefrontal cortex (PFC) were recorded with the patch-clamp technique. In an Mg(2+)-free superfusion medium l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC), a preferential blocker of astrocytic glutamate transporters, caused inward current due to the activation of NMDA receptors. The blockade of conducted action potentials by tetrodotoxin did not interfere with this effect. ATP was inactive when given alone and potentiated the NMDA-induced current in an Mg(2+)-containing but not Mg(2+)-free superfusion medium. Agonists of group I ((S)-3,5-dihydroxyphenylglycine; DHPG) and II ((1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid; LY 379268) metabotropic glutamate receptors (mGluRs) also potentiated responses to NMDA, whereas the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) did not affect them. In contrast to ATP, PDC evoked inward current in the absence but not in the presence of external Mg(2+), when given alone, and facilitated the NMDA effect Mg(2+)-independently. The PDC-induced facilitation of NMDA responses was blocked by group II ((2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid; LY 341495), but not group I ((RS)-1-aminoindan-1,5-dicarboxylic acid; AIDA) or III (alpha-methyl-3-methyl-4-phosphonophenylglycine; UBP 1112) mGluR antagonists. In conclusion, the blockade of astrocytic glutamate uptake by PDC may lead to a stimulation of group II mGluRs, while the triggering of exocytotic glutamate release from astrocytes by ATP may cause activation of group I mGluRs, both situated postsynaptically at layer V PFC pyramidal cells. Either group of mGluRs may interact with NMDA receptors in a positive manner.  相似文献   

4.
LY354740 is a conformationally constrained analog of glutamate with high selectivity and nanomolar agonist activity at Group II metabotropic glutamate receptors (mGluRs). This orally active compound is a new drug candidate which is being developed for the treatment of anxiety. In this study, LY354740 was investigated in a model of nicotine withdrawal using the acoustic startle reflex (sensorimotor reactivity) in rats. Nicotine (6 mg/kg/day) was administered for 12 days subcutaneously by osmotic minipumps. After 12 days the pumps were removed and the animals were allowed to go through spontaneous withdrawal. Cessation of chronic nicotine exposure led to increased startle responding for 4 days following withdrawal. Treatment with LY354740 (0.0001–0.1 mg/kg, i.p.; 0.03–3 mg/kg, oral) produced a dosedependent attenuation of the enhanced auditory startle responding following withdrawal of nicotine with intraperitoneal and oral 50 values of 0.003 mg/kg and 0.7 mg/kg, respectively. These effects were stereoselective since the (−)-enantiomer of LY354740, LY366563, was without effect in this model. LY354740 produced no changes in the sensorimotor reactivity of rats not exposed to nicotine at oral doses up to 10 mg/kg. These data support the functional role of mGluR agonists in nicotine withdrawal and indicate that LY354740 may be efficacious in reducing the symptoms associated with nicotine withdrawal during smoking cessation in humans.  相似文献   

5.
Previous investigations have shown that mGlu receptors would be involved in the amphetamine-induced motor response. However, data are somewhat controversial across studies where methodological protocols vary. The aim of the present study was to determine the involvement of mGlu receptors in the NAcc in the locomotor-activating properties of amphetamine in rats well habituated to their experimental environment, a condition known to modulate the motor response to amphetamine. Focal infusion of the group I mGlu receptor antagonist S-4-CPG, which has no effect on basal motor activity, virtually suppressed the locomotor response to amphetamine, while infusion of the group II mGlu receptor antagonist LY 341495 or the group III mGlu receptor agonist AP4, at the minimal dose that produces locomotor activation, reduced it by approximately a half. These effects were blocked by the group I mGlu receptor agonist DHPG, the group II mGlu receptor agonist APDC, and the group III mGlu receptor antagonist MPPG, respectively. These data confirm that mGlu receptors in the NAcc contribute to the psychostimulant motor effect of amphetamine. Results are discussed from the view of recent neuropharmacological studies that have defined the effects of these mGlu receptor ligands on basal motor activity and DA receptor agonists-induced locomotor responses in rats exposed to similar experimental procedures (Eur J Neuroscience 13 (2001) 2157; Neuropharmacology 41 (2001) 454; Eur J Neuroscience 13 (2001) 869). It is suggested that the contribution of mGlu receptors to the amphetamine-induced motor response may result mainly from their functional, either direct or indirect, interactions with D1-like receptors in the NAcc.  相似文献   

6.
7.
The non-competitive NMDA receptor antagonists, including PCP (phencyclidine), ketamine, and MK-801 (dizocilpine) produce psychosis in humans and injure neurons in retrosplenial cortex in adult rodent brain. This study examined the effects of the metabotropic mGlu2/3 agonist LY379268 and antagonist LY341495 on cortical injury produced by systemic MK-801 (1 mg/kg i.p.) in adult female rats. Systemic injections of mGlu2/3 agonist LY379268, but not mGlu2/3 antagonist LY341495, decreased the injury in the retrosplenial cortex produced by systemic MK-801 as assessed by Hsp70 induction. Bilateral injections of LY379268, but not vehicle, into retrosplenial cortex or bilateral injections of LY379268 into anterior thalamus also decreased the injury in retrosplenial cortex produced by systemic MK-801. The data show that bilateral activation of mGlu2/3 glutamate receptors in cortex or anterior thalamus decreases the neuronal injury in retrosplenial cortex produced by systemic MK-801. Because antipsychotic medications decrease cortical injury produced by NMDA antagonists in rodents and decrease psychosis in humans, mGlu2/3 agonists that decrease cortical injury produced by NMDA antagonists in rodents might be evaluated for decreasing psychosis in people.  相似文献   

8.
《Biochemical pharmacology》2014,88(4):535-542
The pancreas consists of two major divisions, the exocrine and the endocrine pancreas. Recent data from our laboratory have shown that the functions of the two divisions are under modulatory regulation by separate neurocircuits that originate in the dorsal motor nucleus of the vagus (DMV). Metabotropic glutamate receptors (mGluRs) are expressed throughout the central nervous system and have been implicated in the modulation of synaptic transmission. mGluRs consist of three groups of receptors, which can be distinguished based on their pharmacological properties and second messenger systems. Group I mGluRs predominantly increase, whereas group II and III mGluRs decrease synaptic transmission. Group II and group III mGluRs are present on excitatory and inhibitory synaptic terminals impinging on pancreas-projecting DMV neurons. We have shown that group II mGluRs regulate both exocrine pancreatic secretions and insulin release, whereas group III mGluRs only regulate insulin release. Several mGluR agonists and antagonists have been shown to have clinical uses for disorders accompanied by abnormal synaptic transmission, including anxiety and Parkinson's disease. Moreover, a negative allosteric modulator of Group I mGluRs is effective in alleviating symptoms of gastro-esophageal reflux disease (GERD). Since the role of the three mGluR groups in mediating different gastrointestinal (GI) functions appears to be highly specific, the use of agonists or antagonists directed at a single receptor group could potentially provide highly selective targets for the treatment of GI disorders including GERD, functional dyspepsia and acute pancreatitis.  相似文献   

9.
Introduction: Several drugs targeting the GABAergic system are used in the treatment of epilepsy, but only one drug targeting glutamate receptors is on the market. This is surprising because an imbalance between excitatory and inhibitory neurotransmission lies at the core of the pathophysiology of epilepsy. One possible explanation is that drug development has been directed towards the synthesis of molecules that inhibit the activity of ionotropic glutamate receptors. These receptors mediate fast excitatory synaptic transmission in the central nervous system (CNS) and their blockade may cause severe adverse effects such as sedation, cognitive impairment, and psychotomimetic effects. Metabotropic glutamate (mGlu) receptors are more promising drug targets because these receptors modulate synaptic transmission rather than mediate it.

Areas covered: We review the current evidence that links mGlu receptor subtypes to the pathophysiology and experimental treatment of convulsive and absence seizures.

Expert opinion: While mGlu5 receptor negative allosteric modulators have the potential to be protective against convulsive seizures and hyperactivity-induced neurodegeneration, drugs that enhance mGlu5 and mGlu7 receptor function may have beneficial effects in the treatment of absence epilepsy. Evidence related to the other mGlu receptor subtypes is more fragmentary; further investigations are required for an improved understanding of their role in the generation and propagation of seizures.  相似文献   


10.
The purpose of the present studies was to investigate the behavioral and convulsant effects produced by the group I metabotropic glutamate receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG). Administered i.c.v. to mice, (S)-3,5-DHPG produced a behavioral syndrome consisting of scratching and/or facial grooming, tremors, slow forelimb clonus, rearing, and falling that increased over the dose range of 10-400 nmol. The full syndrome, produced by 400 nmol of (S)-3,5-DHPG, was antagonized by the selective mGlu1 receptor antagonist LY456236 but not by the mGlu5 receptor antagonist MPEP or the mGlu2/3 receptor antagonist LY341495. The behaviors induced by the 400 nmol dose were not blocked by the NMDA receptor antagonist MK-801, but were attenuated by the non-NMDA receptor antagonists GYKI 52466 and NBQX, and the Ca2+ mobilization inhibitor dantrolene, but at motor-impairing doses. The scratching behaviors produced by 30 nmol of (S)-3,5-DHPG were antagonized by LY456236 but not by MPEP, LY341495 or MK-801. GYKI 52466 and dantrolene, but not NBQX, inhibited scratching at motor-impairing doses. Both 400 and 30 nmol of (S)-3,5-DHPG produced a generalized seizure as recorded by surface EEG electrodes. LY456236 blocked the seizures produced by 30 nmol but not by 400 nmol; dantrolene was ineffective in blocking seizures produced by either dose. The present findings suggest that (S)-3,5-DHPG produces an increase in excitation that is mediated by mGlu1 and non-NMDA receptors.  相似文献   

11.
Cocaine addiction alters synaptic plasticity in many brain areas involved in learning and memory processes, including the hippocampus. Long-term potentiation (LTP) is one of the best studied examples of hippocampal synaptic plasticity and it is considered as one of the molecular basis of learning and memory. We previously demonstrated that in the presence of cocaine, a long lasting form of hippocampal LTP is induced by a single pulse of high frequency stimulation, which in normal conditions evokes only an early form of LTP. In this study, we further explore the molecular basis of this modulation of synaptic plasticity by cocaine. By performing pharmacological experiments on hippocampal slices, we were able to show that cocaine converts early LTP to a form of LTP dependent on protein synthesis, probably through the cAMP-dependent protein kinase and extracellular signal-regulated kinase signaling cascades. We also found that metabotropic glutamate receptors are involved in this phenomenon. These studies further clarify the molecular machinery used by cocaine to alter synaptic plasticity and modulate learning and memory processes.  相似文献   

12.
Chi H  Jang JK  Kim JH  Vezina P 《Neuropharmacology》2006,51(5):986-992
The neurotransmitter glutamate is known to participate in both the induction and expression of locomotor sensitization by psychostimulant drugs like amphetamine. Previously, it was reported that subtype nonselective blockade of metabotropic glutamate receptors (mGluRs) in the nucleus accumbens (NAcc) produces hyperlocomotion in rats previously exposed to amphetamine. The present experiments examined whether group II mGluRs may contribute to this effect. Rats in different groups were administered five injections of either saline or amphetamine (1.0 mg/kg, i.p.), one injection given every third day. Two weeks later, they were tested for 2 h following an injection of either saline or the group II mGluR antagonist LY341495. In one experiment, test injections were administered systemically (saline or LY341495, 1.0 mg/kg, i.p.). Rats previously exposed to amphetamine showed a greater locomotor response to LY341495 on the test compared to controls previously exposed to saline. This hyperlocomotor response was absent in rats tested with a combination of LY341495 and the group II mGluR agonist LY379268 (1.0 mg/kg, i.p.). In a second experiment, different rats were tested following microinjections into the NAcc (saline or LY341495, 0.1, 10 or 100 microg/0.5 microl/side). Again, rats previously exposed to amphetamine showed a greater dose-dependent locomotor response to LY341495 on the test relative to saline-exposed controls. Locomotor activity in saline-exposed rats challenged with LY341495 did not differ from that observed in rats previously exposed and tested with saline in either experiment. These results indicate that group II mGluRs, particularly those found in the NAcc, are well positioned to modulate the expression of locomotor sensitization by amphetamine.  相似文献   

13.
Carbon monoxide (CO) has been identified as an endogenous biological messenger in the brain. Heme oxygenase catalyzes the metabolism of heme to biliverdin and CO. Recent studies have demonstrated that CO is involved in central cardiovascular regulation and modulates the baroreflex in the nucleus tractus solitarii of rats. The purpose of the present study was to investigate the possible interaction of CO and excitatory amino acids in the nucleus tractus solitarii. In anesthetized male Sprague-Dawley rats, unilateral intranucleus tractus solitarii microinjection of hematin, a heme molecule cleaved by heme oxygenase to yield CO, or excitatory amino acids L-glutamate produced depressor and bradycardiac effects. Similar cardiovascular effects were observed with several agonists for ionotropic glutamate receptors such as N-methyl-D-aspartate (NMDA), (+/-)-alpha-amino-3-hydroxyl-5-methylisoxazole-4-propanoic acid (AMPA), kainic acid and for metabotropic glutamate (mGlu) receptors, trans-(+/-)-1-amino-(1S,3R)-cyclopentanedicarboxylic acid (ACPD). Among these agonists, prior administration of the heme oxygenase inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) (1 nmol), significantly attenuated the cardiovascular effects of hematin, L-glutamate and ACPD. Furthermore, the cardiovascular effects of ACPD were prevented by the selective mGlu receptors antagonist L-2-amino-3-phosphonoprionate (L-AP3). However, pretreatment with ZnDPBG failed to prevent the cardiovascular responses to microinjection of NMDA, AMPA and kainic acid. On the other hand, prior administration of the NMDA receptor antagonist, diazocilpine (MK-801), or (+/-)-2-amino-5-phosphonopentanoic acid (APV) attenuated the depressor and bradycardiac effect of hematin. These results demonstrated that mGlu receptors may couple to the activation of heme oxygenase via the liberation of CO to participate in central cardiovascular regulation. They also suggested that CO and excitatory amino acids may interact in the nucleus tractus solitarii of rats.  相似文献   

14.
Currently prescribed antipsychotics attenuate the positive symptoms of schizophrenia but fail or only mildly improve negative symptoms. The present study aimed to establish an animal model of negative symptoms by examining the effects of the NMDA receptor antagonist MK-801 on sucrose preference. We sought to validate the model by examining the effects of clozapine and d-serine, for which there are positive clinical data regarding their effects on negative symptoms, and haloperidol which is clinically ineffective. We extended our analysis by examining CDPPB, an mGlu5 receptor positive allosteric modulator. Acute MK-801 produced effects indicative of a shift in the hedonic experience of sucrose not confounded by disruptions in motor abilities or taste as revealed by: 1) a decrease in sucrose intake at low concentrations (0.8% or 1.2%), but no effect on water, 2) an increase in consumption for higher (7%) sucrose concentrations, reflecting a shift to the right in the concentration-consumption curve, and 3) no effect on quinine intake. Sub-chronic clozapine and acute d-serine attenuated the MK-801-induced deficit in 1.2% sucrose consumption, whereas sub-chronic haloperidol (0.02 mg/kg) did not. Finally, acute treatment with CDPPB also attenuated this deficit. These data suggest that this model may be useful for identifying novel agents that improve negative symptoms, and that compounds which enhance NMDA receptor function, such as mGlu5 receptor PAMs, may have clinical utility in this regard.  相似文献   

15.
We examined the effect of a chronic imipramine treatment (10 mg/kg, i.p., once daily for 21 days) on the expression and function of metabotropic glutamate (mGlu) receptors in discrete regions of the rat brain. Chronic imipiramine treatment up-regulated the expression of mGlu2/3 receptor proteins in the hippocampus, nucleus accumbens, cerebral cortex and corpus striatum. Expression of mGlu1a receptor protein was increased exclusively in the hippocampus, whereas no changes in the expression of mGlu4 and mGlu5 receptors or Homer-1a protein were detected. Using hippocampal slices, we examined the stimulation of polyphosphoinositide (PI) hydrolysis induced by mGlu receptor agonists in control and imipramine-treated rats. Imipramine treatment amplified the PI response to the non subtype-selective mGlu receptor agonist, 1S,3R-aminocyclopentane-1,3-dicarboxylated (1S,3R-ACPD) in both hippocampal and cortical slices, but failed to affect the response to the selective mGlu1/5 receptor agonist, S-3,5-dihydroxyphenylglycine (DHPG). Amplification was restored when DHPG was combined with the selective mGlu2/3 receptor agonist, LY379268. In addition, 1S,3R-ACPD-stimulated PI hydrolysis was no longer enhanced in imipramine-treated rats when the mGlu2/3 component of the PI response was abrogated by the antagonist, LY341495. In contrast, the ability of LY379268 to inhibit forskolin-stimulated cAMP formation was reduced in hippocampal slices of rats chronically treated with imipramine. Taken together, these results suggest that neuroadaptive changes in the expression and function of mGlu2/3 receptors occur in response to chronic antidepressants.  相似文献   

16.
17.
In the early sixties, anticholinergic drugs were introduced in the pharmacological treatment of Parkinson's disease (PD). The rationale behind their utilisation in the treatment of the disease was based on the evidence of an imbalance between the dopaminergic inputs and the intrinsic cholinergic innervation within the striatum. Metabotropic glutamate (mGlu) receptors have been shown to play a key role in striatal function both in physiological conditions and in experimental models of diseases affecting this brain area. Indeed, compelling electrophysiological and morphological evidence shows that mGlu receptors are highly expressed at cellular level and exert a profound modulatory role on cholinergic interneurons excitability. This review will provide a brief survey of studies on the localization and function of mGlu receptors in cholinergic interneurons. The potential relevance of these findings in the control of motor function and in the treatment of PD will be discussed.  相似文献   

18.
  1. The interactions between N-methyl-D-aspartate (NMDA) and metabotropic glutamate receptors (mGluRs) were investigated in striatal slices, by utilizing intracellular recordings, both in current- and voltage-clamp mode.
  2. Bath-application (50 μM) or focal application of NMDA induced a transient membrane depolarization, while in the voltage-clamp mode, NMDA (50 μM) caused a transient inward current. Following bath-application of the non-selective mGluR agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 μM), NMDA responses were reversibly potentiated both in current (197±15% of control) and voltage-clamp experiments (200±18% of control).
  3. Bath-application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG, 10–300 μM) resulted in a dose-dependent potentiation of NMDA-induced membrane depolarization (up to 400±33% of control). This potentiation was either prevented by preincubation with (RS)-α-methyl-4-carboxyphenylglycine (RS-α-MCPG, 300 μM), or blocked when applied immediately after 3,5-DHPG wash-out.
  4. Neither (2S,1′S,2′S)2-(2′-carboxycyclopropyl)glycine (L-CCG I, up to 100 μM) nor (2S,1′R,2′R,3′R)-2-(2,3-dicarboxycyclopropyl)-glycine (DCG-IV, 1 μM), agonists for group II mGluRs caused any change in NMDA responses. Likewise, L-serine-O-phosphate (L-SOP, 30 μM), agonist for group III mGluRs, did not affect the NMDA-induced depolarization.
  5. The enhancement of the NMDA responses was mimicked by phorbol-12,13-diacetate (PDAc, 1 μM) which activates protein kinase C (PKC). The 3,5-DHPG-mediated potentiation of the NMDA-induced depolarization was prevented by preincubation with staurosporine (100 nM) or calphostin C (1 μM), antagonists of PKC.
  6. Electrophysiological responses to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor activation were not affected by agonists for the three-classes of mGluRs.
  7. The present data suggest that group I mGluRs exert a positive modulatory action on NMDA responses, probably through activation of PKC. This functional interaction in the striatum appears of crucial importance in the understanding of physiological and pathological events, such as synaptic plasticity and neuronal death, respectively.
  相似文献   

19.
Long-term changes in the efficacy of glutamatergic synaptic transmission in the striatal complex are proposed to underlie motor learning and neuroadaptations leading to addiction. Dopamine and glutamate play key roles in the induction of long-term potentiation (LTP) and long-term depression (LTD) in the dorsal striatum, but their contribution to synaptic plasticity in the ventral striatum (nucleus accumbens, NAc) has been less extensively studied. We have examined the role of dopamine, glutamate and GABA in the induction of LTP in mouse brain slices containing the NAc. High-frequency stimulation of glutamatergic inputs elicited LTP of field excitatory postsynaptic potentials/population spikes (fEPSP/PSs) in the core region of the NAc. GABA did not seem to participate in LTP induction because LTP was not altered in the presence of either a GABA(A)- (bicuculline) or a GABA(B)- (CGP 55845) receptor antagonist. However, the dopamine D1 receptor antagonist SCH 23390, but not the dopamine D2 receptor antagonist sulpiride, impaired LTP. The dopamine reuptake blocker nomifensine also inhibited LTP induction. We found that group I metabotropic glutamate receptors (mGluRs) contribute to LTP induction because the mGluR1 antagonist LY 367385, or the mGluR5 antagonist MPEP, blocked LTP induction. Furthermore, the glutamate reuptake blocker DL-TBOA also impaired LTP. The present results demonstrate that dopamine and glutamate play critical roles in the mechanisms of induction of LTP in the NAc through the activation of dopamine D1 receptors and group I mGluRs. However, LTP is negatively regulated when endogenous levels of dopamine or glutamate are elevated.  相似文献   

20.
A differential role for metabotropic glutamate receptors (mGluRs) in spinal nociception in normal animals has previously been identified. The present study examined the contribution of group I and group II mGluRs to the development and maintenance of inflammatory hyperalgesia produced by unilateral intradermal injection of carrageenan into the lower forelimb in sheep. Carrageenan (7.5 mg in 500 micro l) produced a significant bilateral reduction in forelimb mechanical withdrawal thresholds. Intrathecal administration of saline-vehicle or the group II mGluR antagonist (2S)-alpha-ethylglutamate (EGLU; 570 nmol) had no effect on either the development or maintenance of hyperalgesia. However, intrathecal administration of the group I mGluR antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; 450 nmol) before carrageenan blocked the development of ipsilateral hyperalgesia, and when given 2 h after carrageenan, reversed both ipsilateral and contralateral hyperalgesia. Intrathecal administration of the group II mGluR agonist (2S,1S,2S)-2-(carboxycyclopropyl)glycine (L-CCG-I; 620 nmol) given either before or after carrageenan treatment produced analgesia and anti-hyperalgesia, an effect abolished by co-administration of EGLU (570 nmol). The magnitude of the analgesic response, assessed by the area under the response curve, was significantly greater than that produced by LCCG-I in normal animals. These data demonstrate that the development and maintenance of inflammatory hyperalgesia is dependent on activation of group I mGluRs in spinal cord. In addition, the analgesic and anti-hyperalgesic actions of group II mGluRs suggest that these receptors play a crucial role in modulating acute inflammatory hyperalgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号