首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimBicC family RNA-binding protein 1 (BICC1) codes an RNA-binding protein that regulates gene expression and modulates cell proliferation and apoptosis. We aim at investigating the role of BICC1 in gastric carcinogenesis.MethodsBICC1 mRNA expression in gastric cancer (GC) was examined using the Tumor Immune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Correlations between BICC1 expression and clinicopathological parameters were analyzed. The Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan–Meier plotter databases were used to examine the clinical prognostic significance of BICC1 in GC. Signaling pathways related to BICC1 expression were identified by gene set enrichment analysis (GSEA).TIMER and CIBERSORT were used to analyze the correlations among BICC1, BICC1-coexpressed genes and tumor-infiltrating immune cells.ResultsBICC1 was highly expressed in GC and significantly correlated with grade (P = 0.002), TNM stage (P = 0.033), invasion depth (P = 0.001) and vital status (P = 0.009) of GC patients. High BICC1 expression correlated with poor overall survival. The GSEA results showed that cell adhesion-, tumor- and immune- related pathways were significantly enriched in samples with high BICC1 expression. BICC1 and its coexpressed genes were positively related to tumor-infiltrating immune cells and were strongly correlated with tumor-infiltrating macrophages (all r ≥ 0.582, P < 0.0001). The CIBERSORT database revealed that BICC1 correlated with M2 macrophages (P < 0.0001), regulatory T cells (P < 0.0001), resting mast cells (P < 0.0001), activated memory CD4+ T cells (P = 0.002), resting NK cells (P = 0.002), activated dendritic cells (P = 0.002), and follicular helper T cells (P = 0.016). The results from TIMER database confirmed that BICC1 is closely associated with the markers of M2 macrophages and tumor-associated macrophages (all r ≥ 0.5, P < 0.0001).ConclusionBICC1 may be a potential prognostic biomarker in GC and correlates with immune infiltrates.  相似文献   

2.
3.
BackgroundGastric cancer has extremely high morbidity and mortality. Currently, it is lack of effective biomarkers and therapeutic targets for guiding clinical treatment. In this study, we aimed to identify novel biomarkers and therapeutic targets for gastric cancer.MethodsDifferentially expressed genes (DEGs) between gastric cancer and normal tissues were obtained from Gene Expression Omnibus (GEO). Core genes were identified by constructing protein-protein interaction network of DEGs. The expression of core genes was verified in Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN and clinical samples. Further, the mutation, DNA methylation, prognostic value, and immune infiltration of core genes were validated by cBioPortal, MethSurv, Kaplan-Meier plotter, and Tumor Immune Estimation Resource (TIMER) databases. Additionally, drug response analysis was performed by Cancer Therapy Response Portal (CTRP).ResultsA total of seven collagen family members were identified as core genes among upregulated genes. And copy number amplification may be involved in the upregulation of COL1A1 and COL1A2. Importantly, the collagen family was associated with the poor prognosis of patients with metastasis. Among them, COL1A1 had a higher hazard ratio (HR) for overall survival than other members (HR = 2.33). The correlation between DNA methylation levels at CpG sites of collagen family members and the prognosis was verified in gastric cancer. Besides, collagen family expression was positively correlated with macrophages infiltration and the expression of M2 macrophages markers. Further, collagen expression was related to the sensitivity and resistance of gastric cancer cell lines to certain drugs.ConclusionsThe collagen family, especially COL1A1, COL1A2, and COL12A1, may act as potential prognostic biomarkers and immune-associated therapeutic targets in gastric cancer.  相似文献   

4.
Dysregulation of immune system is the hallmark of colon adenocarcinoma (COAD) patients. Aberrant alternative splicing (AS) is closely related to progression and immunotherapy of COAD. However, the intrinsic correlation of immune system with AS have not been elucidated. Here we identified 640 AS events related to immunescore by multi-omics data analysis. 7 key AS events were screened out and used to develop a riskscore model, the area under the ROC curve of riskscore model predicting 3-, 5-year survival probability was 0.750, 0.768. Also, the riskscore based on 7 key AS events is an independent prognostic factor. The AUC of the nomogram composed of riskscore and TMN grade reached to 0.872(3-year) and 0.841(5-year). Moreover, 11 AS events were identified to be associated with the infiltration of 8 types of immune cells. Interestingly, M1 macrophages and memory B cells had a higher infiltration in high-riskscore patients, and higher infiltration of M1 macrophages and memory B cells were significantly associated with worse prognosis. In conclusion, AS are closely related to immunescore, immunity stage and infiltrating immune cells. The riskscore is an effective diagnostic and prognostic indicator better than TMN grade, and AS events related to the immune system may be potential therapeutic targets for COAD.  相似文献   

5.
Recent studies have shown that epigenetic factors may affect immune responses. We previously reported that histone methyltransferase enhancer of zeste homolog 2 (EZH2) was involved in the innate inflammatory responses both in animal model of sepsis and in septic patients. In this study, we prospectively evaluated EZH2 expression kinetics in peripheral CD4+ and CD8+ T cells and HLA-DR expression in CD14+ cells from 48 patients with sepsis and 48 healthy controls. Results showed higher level of EZH2 in CD4+ T cells and CD8+ T cells in sepsis patients than in controls. Meanwhile, EZH2 expression was correlated with CD27 status on T cells. Mean fluorescence intensity (MFI) of EZH2 in CD8+ T cells on day 1 independently predicted death in septic patients. Also, the combination of CD8+ T cell EZH2 expression with APACHEII and SOFA score could enhance the prognostic predictive ability. Moreover, multivariate logistic regression analysis showed that increased expression (proportion and MFI) of EZH2 in CD4+ and CD8+ lymphocytes on day 3 were independently associated with nosocomial infection in septic patients. Additionally, spearman correlation analysis indicated that the levels of EZH2 in CD4+ T cells and CD8+ T cells correlated to CD14+ cells-expressing HLA-DR in patients with sepsis at each time point. Overall, these findings suggest that EZH2 in CD4+ T cells or/and CD8+ T cells may be a novel biomarker for predicting adverse outcomes (mortality and secondary infectious complications) in patients with sepsis.  相似文献   

6.
《Saudi Pharmaceutical Journal》2021,29(11):1289-1302
BackgroundGlioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy.MethodsTarget prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0.ResultsWe found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR.ConclusionThis study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.  相似文献   

7.
Macrophages are recognized as one of the major cell types in tumor microenvironment, and macrophage infiltration has been predominantly associated with poor prognosis among patients with breast cancer. Using the murine models of triple-negative breast cancer in CD169-DTR mice, we found that CD169+ macrophages support tumor growth and metastasis. CD169+ macrophage depletion resulted in increased accumulation of CD8+ T cells within tumor, and produced significant expansion of CD8+ T cells in circulation and spleen. In addition, we observed that CD169+ macrophage depletion alleviated tumor-induced splenomegaly in mice, but had no improvement in bone loss and repression of bone marrow erythropoiesis in tumor-bearing mice. Cancer cells and tumor associated macrophages exploit the upregulation of the immunosuppressive protein PD-L1 to subvert T cell-mediated immune surveillance. Within the tumor microenvironment, our understanding of the regulation of PD-L1 protein expression is limited. We showed that there was a 5-fold higher relative expression of PD-L1 on macrophages as compared with 4T1 tumor cells; coculture of macrophages with 4T1 cells augmented PD-L1 levels on macrophages, but did not upregulate the expression of PD-L1 on 4T1 cells. JAK2/STAT3 signaling pathway was activated in macrophages after coculture, and we further identified the JAK2 as a critical regulator of PD-L1 expression in macrophages during coculture with 4T1 cells. Collectively, our data reveal that breast cancer cells and CD169+ macrophages exhibit bidirectional interactions that play a critical role in tumor progression, and inhibition of JAK2 signaling pathway in CD169+ macrophages may be potential strategy to block tumor microenvironment-derived immune escape.  相似文献   

8.
The infiltration of immune cells is a hallmark of most forms of malignancy. It is well known that in Tumor Microenvironment (TME), monocytes undergo reprogramming process to differentiate into Tumor Associated Macrophages (TAMs) (M2 macrophages). Interestingly, this reprogramming process depends on signals provided by tumors. Hence, tumors from several tissues are infiltrated by functionally distinct TAMs populations. Tumor Protein p53(TP53) plays a role in the regulation or progression of DNA damage and repair through multiple mechanisms of the cell cycle, apoptosis, and genomic stability. Although, TP53 acts as a physiological break for M2 macrophages polarization; the potential regulatory function of TP53 in the infiltration of macrophages is still unknown. We used the Cancer Genomic Atlas (TCGA) clinical data from 10,009 samples across 30 types of cancer via the Tumor IMmune Estimation Tool (TIMER) (https://cistrome.shinyapps.io/timer/) to investigate whether TP53 status has an important clinical outcome on macrophages infiltration in different cancer types. Our analysis of TCGA showed that Ovarian Serous Cystadenocarcinoma (OV) patients with mutant TP53 had significantly higher macrophages infiltration than those with wild-type TP53 (P-value < 0.05) and poor prognosis associated. In contrast, Stomach Adenocarcinoma (STAD) patients with wild-type TP53 had considerably higher macrophages infiltration than those with mutant TP53 (P-value < 0.01) and poor clinical outcomes. Herein, our study sheds light on the novel clinical role of TP53 in macrophages infiltration in TME of OV and STAD patients. Furthermore, the modulation of TP53 and its co-regulators may serve as promising targets for OV and STAD patients.  相似文献   

9.
Melanoma is a highly aggressive cancer with a poor prognosis. We found that immune response played important roles in melanoma metastasis by GSEA analysis. Therefore, we constructed the immune risk score (IRS) by the LASSO-COX analysis in the sequencing metastatic samples from the TCGA database. Then, initial diagnosis patients with metastasis were selected as the test cohort. Importantly, we adopted overall survival (OS) as the survival outcome for initial diagnosis patients, while adopting the observed survival interval (OBS) as the survival outcome for sequencing samples which could avoid biologically meaningless associations. We found that the IRS had high power for predicting 2, 3 and 5-year survival in training (AUC = 0.70, 0.69 and 0.68) and test cohorts (AUC = 0.72, 0.70 and 0.65). The IRS was significantly associated with prognosis both in the metastatic samples (HR = 1.60, 95% CI = 1.16–2.19) and patients with metastasis (HR = 2.89, 95% CI = 1.69–4.53). we further used other independent melanoma cohorts from the GEO databases to confirm the reliability and validity of the IRS (P < 0.01 in all cohorts). The practical nomogram was also built using the IRS and clinical information with high c-index both in training (0.76, 95%CI = 0.72–0.80) and test cohorts (0.72, 95%CI = 0.65–0.79). Finally, IRS showed the predictive value of survival outcome and response of immunotherapy patients, and increased the predictive ability of current immune checkpoint gene markers. In conclusion, the IRS can serve as a potential biomarker for prognosis and responsiveness to immune checkpoint blockade immunotherapy in metastatic melanoma patients.  相似文献   

10.
《药学学报(英文版)》2021,11(8):2172-2196
Immunotherapy is a rapidly developing area of cancer treatment due to its higher specificity and potential for greater efficacy than traditional therapies. Immune cell modulation through the administration of drugs, proteins, and cells can enhance antitumoral responses through pathways that may be otherwise inhibited in the presence of immunosuppressive tumors. Magnetic systems offer several advantages for improving the performance of immunotherapies, including increased spatiotemporal control over transport, release, and dosing of immunomodulatory drugs within the body, resulting in reduced off-target effects and improved efficacy. Compared to alternative methods for stimulating drug release such as light and pH, magnetic systems enable several distinct methods for programming immune responses. First, we discuss how magnetic hyperthermia can stimulate immune cells and trigger thermoresponsive drug release. Second, we summarize how magnetically targeted delivery of drug carriers can increase the accumulation of drugs in target sites. Third, we review how biomaterials can undergo magnetically driven structural changes to enable remote release of encapsulated drugs. Fourth, we describe the use of magnetic particles for targeted interactions with cellular receptors for promoting antitumor activity. Finally, we discuss translational considerations of these systems, such as toxicity, clinical compatibility, and future opportunities for improving cancer treatment.  相似文献   

11.
12.
In the present study we assessed how ionizing radiation affects TLR4-stimulated immune activation in lipopolysaccharide (LPS)-induced cystitis. LPS or saline was administered intravesically to female rats followed by urinary bladder irradiation (20 Gy) 24 h later or sham treatment. Presence in the urinary bladder of inflammatory cells (mast cells, CD3+, ionized calcium-binding adapter molecule 1 (Iba-1)+, CD68+, CD40+, CD80+, CD11c + and CD206 + cells) and expression of oxidative stress (8-OHdG), hypoxia (HIF1α) and anti-oxidative responses (NRF2, HO-1, SOD1, SOD2, catalase) were assessed 14 days later with western blot, qPCR and/or immunohistochemistry. LPS stimulation resulted in a decrease of Iba-1 + cells in the urothelium, an increase in mast cells in the submucosa and a decrease in the bladder protein expression of HO-1, while no changes in the bladder expression of 8-OHdG, NRF2, SOD1, SOD2, catalase and HIF1α were observed. Bladder irradiation inhibited the LPS-driven increase in mast cells and the decrease in Iba1 + cells. Combining LPS and radiation increased the expression of 8-OHdG and number of CD3-positive cells in the urothelium and led to a decrease in NRF2α gene expression in the urinary bladder. In conclusion, irradiation may attenuate LPS-induced immune responses in the urinary bladder but potentiates LPS-induced oxidative stress, which as a consequence may have an impact on the urinary bladder immune sensing of pathogens and danger signals.  相似文献   

13.
The interaction between CD155 and its high-affinity ligand TIGIT is being increasingly investigated in various solid tumors. However, the prognostic significance of CD155 and TIGIT in lung adenocarcinoma (LUAD) remains unclear. In this study, immunohistochemistry was applied in 334 LUAD cases to evaluate the expression of CD155 and TIGIT. Western blotting was conducted in 5 paired primary LUAD and adjacent normal lung tissues. Our results reveal that CD155 and TIGIT are overexpressed in LUAD tissues and that aberrant overexpression is closely correlated with poor clinical outcomes (P < 0.01). The multivariate model also shows that CD155 expression is an independent risk factor for LUAD (RR, 1.34; P = 0.036). Moreover, patients expressing high CD155 and TIGIT simultaneously presented shorter overall survival (OS) (P < 0.01) and progression-free survival (PFS) (P < 0.01). These findings suggest that CD155 and TIGIT can make up a prognosticating tool to predict clinical outcomes, thereby contributing to personalized medical care in LUAD.  相似文献   

14.
15.
Cellular crosstalk is an important mechanism in the pathogenesis of inflammatory disorders and cancers. One significant means by which cells communicate with each other is through the release of exosomes. Exosomes are extracellular vesicles formed by the outward budding of plasma membranes, which are then released from cells into the extracellular space. Many studies have suggested that microvesicles released by colon cancer cells initiate crosstalk and modulate the fibroblast activities and macrophage phenotypes. Interestingly, crosstalk among colon cancer cells, macrophages and cancer-associated fibroblasts maximizes the mechanical composition of the stromal extracellular matrix (ECM). Exosomes contribute to cancer cell migration and invasion, which are critical for colon cancer progression to metastasis. The majority of the studies on colorectal cancers (CRCs) have focused on developing exosomal biomarkers for the early detection and prediction of CRC prognosis. This study highlights the crosstalk among colon cancer-derived exosomes, macrophage phenotypes and fibroblasts during colon cancer metastasis.  相似文献   

16.
17.
18.
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases characterized by the formation of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Growing evidence suggested that there is an association between neuronal dysfunction and neuroinflammation (NI) in AD, coordinated by the chronic activation of astrocytes and microglial cells along with the subsequent excessive generation of the proinflammatory molecule. Therefore, a better understanding of the relationship between the nervous and immune systems is important in order to delay or avert the neurodegenerative events of AD. The inflammatory/immune pathways and the mechanisms to control these pathways may provide a novel arena to develop new drugs in order to target NI in AD. In this review, we represent the influence of cellular mediators which are involved in the NI process, with regards to the progression of AD. We also discuss the processes and the current status of multiple anti-inflammatory agents which are used in AD and have gone through or going through clinical trials. Moreover, new prospects for targeting NI in the development of AD drugs have also been highlighted.  相似文献   

19.
Urinary trypsin inhibitor (UTI), also known as ulinastatin, has been reported to protect multiple organs against inflammation- and/or injury-induced dysfunction. In the present study, we aimed to investigate the immunomodulation effects of a recombinant human ulinastatin (urinary trypsin inhibitor, UTI) (rhUTI) on splenic dendritic cells (DCs) in cecal ligation and puncture (CLP)-induced septic mice. CLP mice were treated with rhUTI intramuscularly at 0, 12, and 24 h after procedure. Splenic CD11c+ DCs were isolated and accessed with flow cytometry for apoptotic or phenotypic analysis. Protein markers and cytokines were determined with Western blotting or ELISA. Treatment with rhUTI could markedly upregulate levels of costimulatory molecules (CD80, CD86) and MHC-II on surface of the splenic DC in CLP mice. The apoptotic rate of splenic DCs was decreased in CLP mice after rhUTI treatment. The survival rate of septic mice was increased after treatment with rhUTI. In addition, protein level of markers in endoplasmic reticulum stress (ERS)-related apoptotic pathways (including GRP78, caspase-12, and CHOP) were obviously down-regulated in the rhUTI-treated group when compared with the CLP group. These results indicate that rhUTI protects CLP-induced sepsis in mice by improving immune response of splenic DCs and inhibiting the excessive ERS-mediated apoptosis.  相似文献   

20.
To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号