首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The North Queensland chirodropid box jellyfish Chironex fleckeri and Chiropsalmus sp. share similar nematocyst composition and the same prey of Acetes australis shrimps in their early medusa stages; however, as C. fleckeri individuals reach larger size, the animals add fish to their diet and their complement of nematocyst types changes, allowing larger doses of venom to be delivered to prey. This study demonstrated that the venoms of the two species differ as well: despite similar effects previously documented in crustacean prey models, the two had widely different cardiac and lethal effects in fish, with C. fleckeri being substantially more potent in its ability to cause death. Comparisons between the venom delivery abilities of the two species showed that the change in nematocysts of C. fleckeri cannot alone account for its ontogenetic shift to prey fish; instead, its prey ecology clearly necessitates it having venom capable of acting efficiently to cause death in fish. Although this venom is almost certainly produced at greater metabolic cost to the animal than the less-lethal venom of Chiropsalmus sp., owing to its greater molecular protein complexity, it confers the advantage of increased caloric intake from fish prey, facilitating larger size and potentially greater reproductive output of C. fleckeri over Chiropsalmus sp.  相似文献   

2.
Jellyfish venom contains various toxins and can cause itching, edema, muscle aches, shortness of breath, blood pressure depression, shock or even death after being stung. Hemolytic protein is one of the most hazardous components in the venom. The present study investigated the hemolytic activity of the nematocyst venom from jellyfish Stomolophus meleagris. Anion exchange chromatography, DEAE Sepharose Fast Flow, and gel filtration chromatography, Superdex200 had been employed to isolate hemolytic proteins from the nematocyst venom of jellyfish S. meleagris. Hemolysis of chicken red blood cells was used to quantify hemolytic potency of crude nematocyst venom and chromatography fractions during the purification process. Native-PAGE profile displayed one protein band in the purified hemolytic protein (SmTX); however, two protein bands with apparent molecular weights of ~45 kDa and 52 kDa were observed in the reducing SDS–PAGE analysis. Approximately 70 μg/mL of SmTX caused 50% hemolysis (HU50) of the erythrocyte suspension. The hemolytic activity of SmTX was shown to be temperature and pH dependent, with the optimum temperature and pH being 37 °C and pH 5.0. The present study is the first report of isolation and partial characterization of hemolytic proteins from the nematocyst venom of the jellyfish S. meleagris. The mechanism of the hemolytic activity of SmTX is not clear and deserves further investigation.  相似文献   

3.
As the proteins with cardiovascular toxicity in jellyfish nematocyst venom and tentacle-only extract (TOE) are probably encoded by the same gene, TOE provides a potential alternative of nematocyst venom with much richer source for acquisition of such proteins. In this study, Cyanea capillata nematocyst venom and TOE (5 mg/kg) both exhibited cardiovascular toxicity in rats, and TOE caused blood pressure reduction in slightly greater amplitude than nematocyst venom 3 min after intravenous administration. SDS-PAGE suggested high likeliness that they both contained the same bioactive protein. The activity of TOE was dose-dependent within 1.25-5 mg/kg, but not at higher concentrations. The cardiovascular activity of TOE sustained a major loss after exposure to 60 °C, and was totally abolished after exposure to 80 °C. Within the pH range of 7-11, the activity of TOE was well preserved, and rapidly attenuated in pH below 5. At 4 °C, TOE lost cardiovascular toxicity after preservation for 7 days, which occurred only after an 8-h preservation at 20 °C. Repeated freeze-thawing and freeze-drying did not significantly affect the toxicity of TOE. Buffer solutions obviously affected the toxicity of TOE, and 0.02 mol/L HAc (pH 6.0) was optimal. These results provide experimental data for optimizing the conditions for isolating the proteins with cardiovascular toxicity from jellyfish TOE, which serves as a promising alternative source of nematocyst venom.  相似文献   

4.
5.
The toxin, previously described as a “non-toxic” toxin, was isolated from the scorpion venom of Tityus serrulatus (Ts), responsible for the most severe and the highest number of accidents in Brazil. In this study, the subtype specificity and selectivity of Ts4 was investigated using six mammalian Nav channels (Nav1.2→Nav1.6 and Nav1.8) and two insect Nav channels (DmNav1 and BgNav). The electrophysiological assays showed that Ts4 specifically inhibited the fast inactivation of Nav1.6 channels, the most abundant sodium channel expressed in the adult central nervous system, and can no longer be classified as a “non-toxic peptide”. Based on the results, we could classify the Ts4 as a classical α-toxin. The Ts4 3D-structural model was built based on the solved X-ray Ts1 3D-structure, the major toxin from Ts venom with which it shares high sequence identity (65.57%). The Ts4 model revealed a flattened triangular shape constituted by three-stranded antiparallel β-sheet and one α-helix stabilized by four disulfide bonds. The absence of a Lys in the first amino acid residue of the N-terminal of Ts4 is probably the main responsible for its low toxicity. Other key amino acid residues important to the toxicity of α- and β-toxins are discussed here.  相似文献   

6.
We have previously characterised the pharmacological activity of a number of jellyfish venoms with a particular emphasis on the profound cardiovascular effects. It has been suggested that jellyfish venoms are difficult to work with and are sensitive to pH, temperature and chemical changes. The current study aimed to examine the working parameters of the venom of the Australian box jellyfish Chironex fleckeri to enable fractionation and isolation of the toxins with cardiovascular activity. C. fleckeri venom was made up fresh each day and subjected to a number of different environments (i.e. a pH range of 5-9 and a temperature range of 4-30 degrees C). In addition, the effect of freeze drying and reconstituting the venom was investigated. Venom (50 microg/kg, i.v.) produced a transient hypertensive response followed by cardiovascular collapse in anaesthetised rats. This biphasic response was not significantly effected by preparation of the venom at a pH of 5, 7 or 9. Similarly, venom (50 microg/kg, i.v.) did not display a loss of activity when exposed to temperatures of 4, 20 or 30 degrees C for 1.5h. However, the cardiovascular activity was abolished by boiling the venom. Freeze drying, and then reconstituting, the venom did not significantly affect its cardiovascular activity. However, repeated freeze drying and reconstituting of extracted venom resulted in a significantly loss of activity. This study provides a more detailed knowledge of the parameters in which C. fleckeri venom can be used and, while supporting some previous studies, contradicts some of the perceived problems of working with the venom.  相似文献   

7.
Venom proteins from the nematocysts of Chironex fleckeri were fractionated by size-exclusion and cation-exchange chromatography. Using sheep erythrocyte haemolysis as an indicator of cytolytic activity, two major cytolysins, with native molecular masses of approximately 370 and 145kDa, and one minor cytolysin ( approximately 70kDa) were isolated. SDS-PAGE and western blot protein profiles revealed that the 370kDa haemolysin is composed of CfTX-1 and CfTX-2 subunits ( approximately 43 and 45kDa, respectively); the most abundant proteins found in C. fleckeri nematocyst extracts. The 145kDa haemolysin predominately contains two other major proteins ( approximately 39 and 41kDa), which are not antigenic towards commercially available box jellyfish antivenom or rabbit polyclonal antibodies raised against whole C. fleckeri nematocyst extracts or CfTX-1 and -2. The kinetics of CfTX-1 and -2 haemolytic activities are temperature dependent and characterised by a pre-lytic lag phase ( approximately 6-7min) prior to initiation of haemolysis. Significant amino acid sequence homology between the CfTX proteins and other box jellyfish toxins suggest that CfTX-1 and -2 may also be lethal and dermonecrotic. Therefore, further in vivo and in vitro studies are required to investigate the potential roles of CfTX-1 and -2 in the lethal effects of C. fleckeri venom.  相似文献   

8.
Cyanea nozakii Kishinouye, a jellyfish widely distributed in coastal areas of China, has garnered attention because of its stinging capacity and the resulting public health hazard. We used a recently developed technique to extract jellyfish venom from nematocysts; the present study investigates the lethality of C. nozakii venom. The nematocyst contents were extremely toxic to the grass carp, Ctenopharyngodon idellus, producing typical neurotoxin toxicity. The ID50 was about 0.6 μg protein/g fish. Toxin samples were stable when kept at −80 °C, but after 48 h, an 80% decline in lethality occurred at −20 °C. Poor stability of the venom was observed within the range of 65-80 °C and at pH 3.5. The venom was hydrolyzed by a proteolytic enzyme, trypsin. Fractionation of the venom yielded two protein bands with molecular weights of 60 kDa and 50 kDa. Our results provide the first evidence that C. nozakii produces lethal toxins. These characteristics highlight the need for the isolation and molecular characterization of new active toxins in C. nozakii.  相似文献   

9.
Despite the medical urgency presented by cubozoan envenomations, ineffective and contradictory first-aid management recommendations persist. A critical barrier to progress has been the lack of readily available and reproducible envenomation assays that (1) recapitulate live-tentacle stings; (2) allow quantitation and imaging of cnidae discharge; (3) allow primary quantitation of venom toxicity; and (4) employ rigorous controls. We report the implementation of an integrated array of three experimental approaches designed to meet the above-stated criteria. Mechanistically overlapping, yet distinct, the three approaches comprised (1) direct application of test solutions on live tentacles (termed tentacle solution assay, or TSA) with single image- and video-microscopy; (2) spontaneous stinging assay using freshly excised tentacles overlaid on substrate of live human red blood cells suspended in agarose (tentacle blood agarose assays, or TBAA); and (3) a “skin” covered adaptation of TBAA (tentacle skin blood agarose assay, or TSBAA). We report the use and results of these assays to evaluate the efficacy of topical first-aid approaches to inhibit tentacle firing and venom activity. TSA results included the potent stimulation of massive cnidae discharge by alcohols but only moderate induction by urine, freshwater, and “cola” (carbonated soft drink). Although vinegar, the 40-year field standard of first aid for the removal of adherent tentacles, completely inhibited cnidae firing in TSA and TSBAA ex vivo models, the most striking inhibition of both tentacle firing and subsequent venom-induced hemolysis was observed using newly-developed proprietary formulations (Sting No More™) containing copper gluconate, magnesium sulfate, and urea.  相似文献   

10.
The neurotoxic effects produced by a tentacle venom extract and a fraction were analyzed and correlated by in vivo and in vitro approaches. The tentacle venom extract exhibited a wide range of protein components (from 24 to >225 kDa) and produced tetanic reactions, flaccid paralysis, and death when injected into crabs. Two chromatography fractions also produced uncontrolled appendix movements and leg stretching. Further electrophysiological characterization demonstrated that one of these fractions potently inhibited ACh-elicited currents mediated by both vertebrate fetal and adult muscle nicotinic acetylcholine receptors (nAChR) subtypes. Receptor inhibition was concentration-dependent and completely reversible. The calculated IC50 values were 1.77 μg/μL for fetal and 2.28 μg/μL for adult muscle nAChRs. The bioactive fraction was composed of a major protein component at ~90 kDa and lacked phospholipase A activity. This work represents the first insight into the interaction of jellyfish venom components and muscle nicotinic receptors.  相似文献   

11.
Taipans are highly venomous Australo-Papuan elapids. A new species of taipan, the Western Desert Taipan (Oxyuranus temporalis), has been discovered with two specimens housed in captivity at the Adelaide Zoo. This study is the first investigation of O. temporalis venom and seeks to characterise and compare the neurotoxicity, lethality and biochemical properties of O. temporalis venom with other taipan venoms. Analysis of O. temporalis venom using size-exclusion and reverse-phase HPLC indicated a markedly simplified “profile” compared to other taipan venoms. SDS-PAGE and agarose gel electrophoresis analysis also indicated a relatively simple composition. Murine LD50 studies showed that O. temporalis venom is less lethal than O. microlepidotus venom. Venoms were tested in vitro, using the chick biventer cervicis nerve-muscle preparation. Based on t90 values, O. temporalis venom is highly neurotoxic abolishing indirect twitches far more rapidly than other taipan venoms. O. temporalis venom also abolished responses to exogenous acetylcholine and carbachol, indicating the presence of postsynaptic neurotoxins. Prior administration of CSL Taipan antivenom (CSL Limited) neutralised the inhibitory effects of all taipan venoms. The results of this study suggest that the venom of the O. temporalis is highly neurotoxic in vitro and may contain procoagulant toxins, making this snake potentially dangerous to humans.  相似文献   

12.
Jellyfish stings are a common issue globally, particularly in coastal areas in the summer. Victims can suffer pain, itching, swelling, shock, and even death. Usually, hot water, vinegar, or alumen is used to treat the normal symptoms of a jellyfish sting. However, a specific antivenom may be an effective treatment to deal with severe jellyfish stings. Cyanea nozakii often reach a diameter of 60 cm and are responsible for hundreds of thousands of stings per year in coastal Chinese waters. However, there has been no specific C. nozakii antivenom until now, and so the development of this antivenom is very important. Herein, we collected C. nozakii antisera from tentacle extract venom immunized rabbits and purified the immunoglobulin (IgG) fraction antivenom (AntiCnTXs). Subsequently, two complete procedures to produce a refined F(ab’)2 type of antivenom (F(ab’)2-AntiCnTXs) and Fab type of antivenom (Fab-AntiCnTXs) by multiple optimizations and purification were established. The neutralization efficacy of these three types of antivenoms was compared and analyzed in vitro and in vivo, and the results showed that all types of antibodies displayed some neutralization effect on the lethality of C. nozakii venom toxins, with the neutralization efficacy as follows: F(ab’)2-AntiCnTXs ≥ AntiCnTXs > Fab-AntiCnTXs. This study describes the preparation of novel C. nozakii jellyfish antivenom preparations towards the goal of developing a new, effective treatment for jellyfish stings.  相似文献   

13.
《Toxicology in vitro》2010,24(6):1750-1756
Using a recently developed technique to extract jellyfish venom from nematocysts, the present study investigated the hemolytic activity of Cyanea nozakii Kishinouye nematocyst venom on chicken erythrocytes. Venom extract caused a significant concentration-dependent hemolytic effect. The extract could retain its activity at −80 °C but was unstable when kept at 4 °C and −20 °C for 2 days. The hemolytic activity was inhibited by heating within the range of 37–100 °C. The extract was active over a pH range of 5.0–8.63 and the pH optima for the extract was 7.8. Incubation of the venom with sphingomyelin specially inhibited hemolytic activity by up to 70%. Cu2+ and Mn2+ greatly reduced the hemolytic activity while Mg2+, Sr2+ and Ba2+ produced a relatively low inhibiting effect on the hemolytic activity. Treatment with Ca2+ induced a concentration-dependent increase in the hemolytic activity. In the presence of 5 mM EDTA, all the hemolytic activity was lost, however, the venom containing 1.5 mM EDTA was stable in the long-term storage. PLA2 activity was also found in the nematocyst venom of C. nozakii. These characteristics provide us a fundamental knowledge in the C. nozakii nematocyst venom which would benefit future research.  相似文献   

14.
Previous studies in our laboratory have shown that tentacle-only extract (TOE) has similar hypotensive effects with nematocyst venom from jellyfish Cyanea capillata, and the experimental studies on the in vivo cardiovascular effects of TOE were further performed to explore the leading cause of death and analyze the basic physiopathologic change in anaesthztized SD rats. Plots of TOE dose versus time to death showed dose-dependent curvilinear relationship. ECG changed in a dose- and time-dependent manner. Haemodynamic parameters, including the heart rate, mean femoral arterial pressure, left ventricular developed pressure and the first derivative of left ventricular pressures, decreased, but left ventricular end-diastolic pressure did not increase. Arterial partial pressure of oxygen and oxygen saturation did not change. Lactate dehydrogenase, creatine kinase and MB isoenzyme of creatine kinase increased significantly. Histopathological examination showed congestion, haemorrhage, edema and denaturation in the heart; congestion, haemorrhage in the lung and acute congestion in the liver. Transmission electron microscopy examination found that parts of sarcomeric filaments disrupted, dissolved and disappeared, and parts of mitochondria swelled in cardiocytes. Laser scanning confocal microscope examination found that ventricular myocytes from adult rat were deformed and ultimately died within 30 min after TOE treatment. Our results reveal that cardiodepressive effect of C. capillata TOE is the leading cause of death and acute total heart failure is the basic physiopathologic change in anaesthetized SD rats.  相似文献   

15.
16.
R. I. Grove and D. A. Hessinger. Antibodies to sea anemone nematocyst venom—I. Serological demonstration of specific antibodies produced in rabbits in response to nematocyst venom from the sea anemone, Aiptasia pallida. Toxicon17, 99–108, 1979.—Sea anemone, Aiptasia pallida, nematocyst venom was attenuated by dialysis against dilute formaldehyde and in combination with complete Freund's adjuvant used to immunize laboratory rabbits. Subsequent immunizations (challenges) were administered using active venom with incomplete Freund's adjuvant. The kinetics and strengths of the elicited humoral immune responses were monitored using double immunodiffusion in two dimensions (Ouchterlony technique) and microimmunoelectrophoresis. Subsequent immune challenges were administered only at optimal intervals after the previous immunization as determined by the loss of detectable precipitin reactions on Ouchterlony plates. The antisera of all challenges reacted identically with active and attenuated venoms indicating that the attenuated venom was antigenically equivalent to the active venom in in vitro immunodiffusion reactions and immunogenically equivalent in vivo in its ability to elicit humoral immune responses.  相似文献   

17.
Two of the most abundant proteins found in the nematocysts of the box jellyfish Chironex fleckeri have been identified as C. fleckeri toxin-1 (CfTX-1) and toxin-2 (CfTX-2). The molecular masses of CfTX-1 and CfTX-2, as determined by SDS-PAGE, are approximately 43 and 45 kDa, respectively, and both proteins are strongly antigenic to commercially available box jellyfish antivenom and rabbit polyclonal antibodies raised against C. fleckeri nematocyst extracts. The amino acid sequences of mature CfTX-1 and CfTX-2 (436 and 445 residues, respectively) share significant homology with three known proteins: CqTX-A from Chiropsalmus quadrigatus, CrTXs from Carybdea rastoni and CaTX-A from Carybdea alata, all of which are lethal, haemolytic box jellyfish toxins. Multiple sequence alignment of the five jellyfish proteins has identified several short, but highly conserved regions of amino acids that coincide with a predicted transmembrane spanning region, referred to as TSR1, which may be involved in a pore-forming mechanism of action. Furthermore, remote protein homology predictions for CfTX-2 and CaTX-A suggest weak structural similarities to pore-forming insecticidal delta-endotoxins Cry1Aa, Cry3Bb and Cry3A.  相似文献   

18.
The pharmacology of Australian box jellyfish, Chironex fleckeri, unpurified (crude) nematocyst venom extract (CVE) was investigated in rat isolated cardiac and vascular tissues and in anaesthetised rats.In small mesenteric arteries CVE (0.01-30 μg/ml) caused contractions (EC50 1.15 ± 0.19 μg/ml) that were unaffected by prazosin (0.1 μM), bosentan (10 μM), CGRP8-37 (1 μM) or tetrodotoxin (1 μM). Box jellyfish antivenom (5-92.6 units/ml) caused rightward shifts of the CVE concentration-response curve with no change in the maximum. In the presence of l-NAME (100 μM) the sensitivity and maximum response to CVE were increased, whilst MgSO4 (6 mM) decreased both parameters. CVE (1-10 μg/ml) caused inhibition of the contractile response to electrical sympathetic nerve stimulation.Left atrial responses to CVE (0.001-30 μg/ml) were bi-phasic, composed of an initial positive inotropy followed by a marked negative inotropy and atrial standstill. CVE (0.3 μg/ml) elicited a marked decrease in right atrial rate followed by atrial standstill at 3 μg/ml. These responses were unaffected by 1 μM of propranolol, atropine or CGRP8-37. Antivenom (54 and 73 units/ml) caused rightward shifts of the CVE concentration-response curve and prevented atrial standstill in left and right atria.The effects of CVE do not appear to involve autonomic nerves, post-synaptic α1- or β1-adrenoceptors, or muscarinic, endothelin or CGRP receptors, but may occur through direct effects on the cardiac and vascular muscle. Box jellyfish antivenom was effective in attenuating CVE-induced responses in isolated cardiac and vascular tissues.  相似文献   

19.
IntroductionChironex fleckeri is a large box jellyfish that has been labelled the ‘most venomous animal’ in the world. We have recently shown that the primary effect of C. fleckeri venom in vivo is cardiovascular collapse. This study utilised a cell-based assay to examine the effects of C. fleckeri venom on the proliferation of a rat aortic smooth muscle cell line. In addition, the ability of CSL box jellyfish antivenom and/or various potential treatment strategies to neutralise the effects of the venom was examined.MethodsA7r5 cells were cultured in media containing venom. The effect of CSL box jellyfish antivenom (5 U/mL), CSL polyvalent snake antivenom (5 U/mL), lanthanum (5 µM), MgSO4 (50 mM), verapamil (5 µM) or felodipine (5 µM) was examined. Cell viability was determined using a Cell titer 96 AQueous One Solution cell proliferation assay.ResultsIncubation of A7r5 cells with serially diluted venom (2–0.004 µg/mL) caused a concentration-dependent inhibition of cell proliferation with an IC50 value of 0.056 µg/mL. This response was not affected by the absence of calcium or the presence of lanthanum in the media. Box jellyfish antivenom (5 U/mL) prevented the inhibition of cell proliferation caused by the venom. Verapamil (5 µM) had no significant effect on the inhibition. In contrast, felodipine (5 µM) or MgSO4 (50 mM) potentiated the effects of the venom and partially negated the protective effect of the antivenom.DiscussionThis study displayed the ability to utilise a cell-based assay to determine the effects of C. fleckeri venom on vascular cell viability. It showed that CSL box jellyfish can neutralise the effects of the venom but only if added prior to the venom. In addition, potential adjunct therapies verapamil, felodipine and MgSO4 were found to be ineffective, with felodipine and MgSO4 potentiating the detrimental effects of the venom.  相似文献   

20.
Chrysaora quinquecirrha (sea nettle) nematocyst venom is lethal to rainbow killifish (Adina xenica) when injected intraperitoneally or topically applied to the exposed brain or denuded epithelium. The lethal activity is thermostable requiring 100 °C heat for inactivation. This paper reports here for the first time that the venom also activates the complement system with the subsequent formation of the C5b-9 terminal complement complex. The events are associated with both a strong chemoattractant release and the tissue damage. These are also, at least in part, responsible for the pathogenesis of some clinical signs and symptoms associated to the jellyfish stings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号