首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-Fluorouracil (5FUra) is the third most popular chemotherapeutic component employed to treat solid tumors. In the present study, we aimed to appraise the silymarin (SM) and silymarin nanoemulsion (SMN) effect on 5FUra-induced gastrointestinal toxicity in adult male rats. A total of 30 male Wistar rats were divided into 6 groups including the control (Crl) group, and groups treated with SMN (5 mg.kg−1), SM (5 mg.kg−1), 5FUra + SMN (5 mg.kg−1), and 5FUra + SM (5 mg.kg−1) by IP injection for 14 days. And gastrointestinal toxicity was induced by a single intraperitoneal (IP) injection of 5FUra (100 mg.kg−1) for the last group in the study. Treating rats with SM and SMN diminished elevating malondialdehyde (MDA) levels, and improved total antioxidant capacity (TAC) levels. Also, the intensity of mRNA expression of interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-α) caused by 5FUra in the gastrointestinal tissue tract, and macroscopic oral ulcerations decreased, ass well as weight loss was prevented, particularly in the SMN group. Moreover, in the microscopic scope, there were significant improvements in the levels of hyperemia, hyaline, and inflammatory cell infiltration in the tongue, esophagus, and intestinal tissues in the FUra + SMN and FUra + SM groups compared to 5FUra. Hence, treatment with SM and SMN reduced oxidative stress, histopathological degeneration, and gene expression of inflammatory markers in the gastrointestinal tract. According to the results, treatment with SM and SMN markedly decreases the gastrointestinal toxicity caused by 5FUra.  相似文献   

2.
Owing to the increasing popularity of chondroitin sulfate (CS) for joint pain treatment, the CS-production industry has been producing an increasing amount of waste, which includes type II collagen, non-collagenous proteins, and residual CS. To effectively utilize these resources, we intended to develop new products from the by-product of skate chondroitin sulfate production (BP-sCS). In this study, we examined the antioxidant and fibroblast-activating properties of BP-sCS, intending to apply it for a wound-healing promoter. BP-sCS exhibited ABTS and DPPH radical scavenging activities, protected L929 fibroblasts from H2O2- or AAPH-induced oxidative stress, and scavenged intracellular reactive oxygen species. Moreover, BP-sCS promoted L929 fibroblast proliferation/metabolism and stimulated collagen deposition into the extracellular matrix. In addition, BP-sCS counteracted AAPH-induced oxidative stress damage that inhibited fibroblast migration. These effect were attributed to the cooperation among the molecules of BP-sCS, namely, type II collagen peptides, non-collagenous peptides, and CS polysaccharides. Our findings indicate that BP-sCS has the potential as a novel wound-healing promoter. This study is the first step toward the realization of a sustainable CS-production industry by waste utilization in healthcare products.  相似文献   

3.
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) playing crucial roles in sepsis-induced diseases, including myocardial inflammation. Nevertheless, the expression pattern and role of miR-215-5p in myocardial inflammation are still un-investigated up to now. The purpose of our study is to further inquire the effect of miR-215-5p on lipopolysaccharide (LPS)-activated inflammation injury in H9c2 cells and the possibly associated mechanisms. First of all, LPS-induced H9c2 cells models were constructed and affirmed via detection of pro-inflammatory factors, the viability and apoptosis. MiR-215-5p was overtly down-regulated in LPS-treated H9c2 cells and miR-215-5p overexpression could suppress the inflammation injury. LRRFIP1 was proved to be the target gene of miR-215-5p and meanwhile, miR-215-5p also targeted ILF3 that experimented to bind to and stabilize LRRFIP1. Final rescue assays confirmed that the overexpression of LRRFIP1 or ILF3 rescued the repressive effect of miR-215-5p up-regulation on the inflammation injury in septic H9c2. Totally, miR-215-5p exerted protective function in the inflammation injury in septic H9c2 via targeting ILF3 and LRRFIP1, suggesting an additional treatment method for sepsis-activated myocardial inflammation.  相似文献   

4.
Sodium-glucose co-transporter 2 (SGLT 2) inhibitors are a relatively new antidiabetic drug with antioxidant and anti-inflammatory properties. Therefore, this study aimed to investigate whether SGLT 2 inhibitors have a neuroprotective effect in PD. Twenty-four Wistar rats were randomized into four groups. The first one (control group) received dimethyl sulfoxide (DMSO) as a vehicle (0.2 mL/48 hr, S.C). The second group (positive control) received rotenone (ROT) (2.5 mg/kg/48 hr, S.C) for 20 successive days, whereas the third and fourth groups received empagliflozin (EMP) (1 and 2 mg/kg/day, orally), respectively. The two groups received rotenone (2.5 mg/kg/48 hr S.C) concomitantly with EMP for another 20 days on the fifth day. By the end of the experimental period, behavioral examinations were done. Subsequently, rats were sacrificed, blood samples and brain tissues were collected for analysis. ROT significantly elevated oxidative stress and proinflammatory markers as well as α-synuclein. However, dopamine (DP), antioxidants, tyrosine hydroxylase (TH), and Parkin were significantly decreased. Groups of (EMP + ROT) significantly maintained oxidative stress and inflammatory markers elevation, maintained α-synuclein and Parkin levels, and elevated TH activity and dopamine level. In both low and high doses, EMP produced a neuroprotective effect against the PD rat model, with the high dose inducing a more significant effect.  相似文献   

5.
6.
Ambelline, an alkaloid from the Amaryllidaceae family with a crinane-type skeleton, has not yet demonstrated any outstanding biological activity. However, its analogues prepared by derivatization of the C-11 hydroxyl group show different interesting effects. Continuing our earlier work, twelve novel aromatic esters were developed (10, 14, 16, 17, 22–25, 30–33) and studied, together with previously synthesized derivatives (2–9, 11–13, 15, 18–21, 26–29) in terms of their cytotoxic activity. The cytotoxic potential was determined on a panel of nine human cancer cell lines and one noncancerous cell line to characterize their biological activity spectrum. To describe and foresee the structure–activity relationship for further research, substances synthesized and described in our previous work were also included in this cytotoxicity study. The most significant activity was associated with analogues having methyl (10), methoxy (14–17), or ethoxy (18) substitution on the phenyl condensed to ambelline. However, the 4-chloro-3-nitrobenzoyl derivative (32) showed the most promising IC50 values, ranging from 0.6 ± 0.1 µM to 9.9 ± 0.2 µM. In vitro cytotoxicity studies indicated the most potent antiproliferative activity of 32 in a dose-dependent and time-dependent manner. Besides, 32 was found to be effective in decreasing viability and triggering apoptosis of MOLT-4 T-lymphoblastic leukemia cells.  相似文献   

7.
Alcoholic liver disease (ALD) is a broad-spectrum disorder, covering fatty liver, cirrhosis, alcoholic hepatitis and in extreme untreated condition hepatocellular carcinoma (HCC) may also develop. Cladonia rangiferina (CR) is a class of lichen having a broad spectrum of pharmacological activity. It is used like traditional natural sources in ancient times in India, China, Sri Lanka, etc. Folkloric record about CR has reported their use as an antimicrobial, antitumor, antioxidant, anti-inflammatory activities, etc. Hence, the present study was requested to ascertain the effect of the ethanolic extract of Cladonia rangiferina (CRE) on alcohol-induced hepatotoxicity. The animals were evaluated for the estimation of the liver in vivo biochemical antioxidant parameters. The liver tissues were further evaluated histopathologically and western blotting examination for localization of apoptotic gene expression that plays a pivotal role in hepatotoxicity. The results of this study reveal that CRE proves to be helpful in the treatment of alcohol-induced hepatotoxicity and oxidative stress. Results of different markers have shown that among all, CRE has demonstrated the best hepatoprotective activity. These observations say about the importance of the components of the extract. The ameliorative action of CRE in alcoholic liver damage may exist due to antioxidant, anti-inflammatory, and anti-apoptotic activities.  相似文献   

8.
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.  相似文献   

9.
Omeprazole (OME) is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, OME may cause some inevitable side effects and the long-term consequences of OME could increase the risk of diarrhea. Patchouli Alcohol (PA), the main extract of Pogostemonis Herba, have demonstrated benefits in treating gastric ulcer (GU) with low toxicity. The present study aimed to investigate the synergistically protective effects of OME and PA against ethanol-induced GU in rats to study the involvement of antioxidant and anti-inflammatory activities. Moreover, the anti-apoptosis, anti-oxidant and anti-inflammatory effects in H2O2-induced gastric epithelial cells (GES-1) and LPS-induced RAW264.7 cells were determined, as well as the modulation of signaling proteins. The results demonstrated that PA alone or combined with OME provided remarkable benefits by reducing ulcer areas, modulating oxidant stress and inflammatory factors and the therapeutic efficacy was showed to be dose-dependent, which were partly superior to that of high-dose OME only. Additionally, co-treated regimen could superiorly down-regulate cell apoptosis and regulate the levels of oxidant activities and inflammatory cytokines on H2O2-induced GES-1 cells and LPS-induced RAW264.7 cells, which involved with cleaved caspase 3, Bcl-2 and BAX protein expressions and MAPK pathway. We provided a new understanding that the combination of OME and PA possessed gastroprotective effects on modulating cell apoptosis, antioxidant stress and anti-inflammatory responses against GU. Therefore, PA was inferred to take a potential and critic role in gastric mucosa protection.  相似文献   

10.
The present study investigated the effect of the continentalic acid (CNT) isolated from the Aralia Continentalis against the LPS and E. coli-induced nephrotoxicity. The LPS and E. coli administration markedly altered the behavioral parameters including spontaneous pain, tail suspension and survival rate. However, the treatment with CNT dose dependently improved the behavioral parameters. The CNT treatment significantly improved the renal functions test (RFTs) and hematological parameters following LPS and E. coli-induced kidney injury. Furthermore, the LPS and E. coli administration markedly compromised the anti-oxidant enzymes and enhanced the oxidative stress markers. However, the CNT treatment markedly enhanced the anti-oxidants enzymes such as GSH, GST, Catalase and SOD, while attenuated the oxidative stress markers such as MDA and POD. The MPO enzyme is widely used marker for the neutrophilic infiltration, the LPS and E. coli administration markedly increased the MPO activity. However, the CNT treatment markedly attenuated the MPO activity in both LPS and E. coli-induced kidney injury. Furthermore, the CNT treatment markedly attenuated the NO production compared to the LPS and E. coli-induced kidney injury group. Additionally, the CNT treatment improved the histological parameters markedly (H and E, PAS and Masson’s trichome staining) and protect the kidney from the inflammatory insult of the LPS and E. coli evidently. The comet assay revealed marked DNA damage, however, the CNT treatment markedly prevented the LPS and E. coli-induced kidney damage. The CNT treatment markedly enhanced the expression of Nrf2, while attenuated the iNOS expression in both models of kidney injury.  相似文献   

11.
MicroRNAs (miRNAs) have emerged as critical modulators involved in the regulation of airway remodeling in asthma. MicroRNA-182-5p (miR-182-5p) has been reported as a key miRNA in regulating the proliferation and migration of various cell types, and its dysfunction contributes is implicated in a wide range of pathological processes. Yet, it remains unknown whether miR-182-5p modulates the proliferation and migration of airway smooth muscle (ASM) cells during asthma. In the present study, we aimed to determine the potential role of miR-182-5p in regulating the proliferation and migration of ASM cells induced by tumor necrosis factor (TNF)-α in vitro. We found that TNF-α stimulation markedly reduced miR-182-5p expression in ASM cells. Gain-of-function experiments showed that miR-182-5p upregulation suppressed the proliferation and migration of ASM cells induced by TNF-α. By contrast, miR-182-5p inhibition had the opposite effect. Notably, tripartite motif 8 (TRIM8) was identified as a target gene of miR-182-5p. TRIM8 expression was induced by TNF-α stimulation, and TRIM8 knockdown markedly impeded TNF-α-induced ASM cell proliferation and migration. Moreover, miR-182-5p overexpression or TRIM8 knockdown significantly downregulated the activation of nuclear factor-κB (NF-κB) induced by TNF-α. However, TRIM8 restoration partially reversed the miR-182-5p-mediated inhibitory effect on TNF-α-induced ASM cell proliferation and migration. In conclusion, our study indicates that miR-182-5p restricts TNF-α-induced ASM cell proliferation and migration through downregulation of NF-κB activation via targeting TRIM8. The results of our study highlight the potential importance of the miR-182-5p/TRIM8/NF-κB axis in the airway remodeling of asthma.  相似文献   

12.
BackgroundCisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs).MethodsCSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays.ResultsCSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells.ConclusionThe nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.  相似文献   

13.
In the present study, we have investigated and/or compared the role of glibenclamide, G as cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor, and lubiprostone, L as chloride channel-2 (ClC-2) activator in the 2,4-dinitrobenzene sulfonic acid (DNBS)-induced gastrointestinal inflammation. GI inflammation was induced by intrarectal administration of DNBS. Rats were randomly allocated in 5 groups as sham control, distilled water + DNBS, sulfasalazine (S) + DNBS, G + DNBS, and L + DNBS. All the groups were pre-treated successively for five days before the induction of colitis. One day before and the first four days after DNBS administration various parameters were studied. Later, blood chemistry, colon’s gross structure, histology, and the antioxidant load was examined. Pre-treatment with G significantly protected the change induced by DNBS concerning the change in body weight, food intake, diarrhea, occult blood in the feces, wet weight of the colon, and spleen. G because of its anti-inflammatory property down-regulated the neutrophil and WBC count and up-regulated the lymphocyte number. Moreover, G efficiently ameliorates the oxidative stress in the colon and declines the level of myeloperoxidase and malondialdehyde and up-regulated the level of superoxide dismutase and glutathione. Lubiprostone has not shown any promising effects, in fact, it causes an increase in diarrheal frequency. Our findings from this study represent that G has good potential to ameliorate GI inflammation induced by DNBS by its multiple actions including CFTR blockage and reducing the release of inflammatory markers from the MCs, anti-inflammatory and free radical scavenging property.  相似文献   

14.
The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.  相似文献   

15.
BackgroundType 2 Diabetes Mellitus (T2DM) patients are exposed to a 7.5 times higher risk of hypoglycemia while fasting during Ramadan. Relevant diabetes guidelines prioritize the use of SGLT2 inhibitors over other classes. There is a great need to enrich data on their safe and effective use by fasting patients at greater risk of hypoglycemia. Therefore, this study aims to assess the safety and tolerability of Empagliflozin in T2DM Muslim patients during Ramadan.MethodologyA prospective cohort study was conducted for adult Muslim T2DM patients. Patients who met the inclusion criteria were categorized into two sub-cohorts based on Empagliflozin use during Ramadan (Control versus Empagliflozin). The primary outcomes were the incidence of hypoglycemia symptoms and confirmed hypoglycemia. Other outcomes were secondary. All patients were followed up to eight weeks post-Ramadan. A propensity score (PS) matching and Risk Ratio (RR) were used to report the outcomes.ResultsAmong 1104 patients with T2DM who were screened, 220 patients were included, and Empagliflozin was given to 89 patients as an add-on to OHDs. After matching with PS (1:1 ratio), the two groups were comparable. The use of other OHDs, such as sulfonylurea, DPP4 inhibitors, and Biguanides, was not statistically different between the two groups. The risk of hypoglycemia symptoms during Ramadan was lower in patients who received Empagliflozin than in the control group (RR 0.48 CI 0.26, 0.89; p-value = 0.02). Additionally, the risk of confirmed hypoglycemia was not statistically significant between the two groups (RR 1.09 CI 0.37, 3.22; p-value = 0.89).ConclusionEmpagliflozin use during Ramadan fasting was associated with a lower risk of hypoglycemia symptoms and higher tolerability. Further randomized control trials are required to confirm these findings.  相似文献   

16.
Multiple sclerosis (MS) is an autoimmune disease that involves demyelination of axons in the central nervous system (CNS) and affects patients worldwide. It has been demonstrated that ligand-activated aryl hydrocarbon receptor (Ahr) ameliorates experimental autoimmune encephalomyelitis (EAE), a murine model of MS, by increasing CD4+FoxP3+ T cells. Recent evidence indicates that AT-rich interactive domain-containing protein 5a (Arid5a) is required for EAE pathogenesis by stabilizing Il6 and OX40 mRNAs. However, the differential modulation of Ahr and Arid5a in autoimmunity as a therapeutic strategy is unexplored. Herein, an in silico, in vitro and in vivo approach identified Flavipin (3,4,5-trihydroxy-6-methylphthalaldehyde) as an Ahr agonist that induces the expression of Ahr downstream genes in mouse CD4+ T cells and CD11b+ macrophages. Interestingly, Flavipin inhibited the stabilizing function of Arid5a and its counteracting effects on Regnase-1 on the 3′ untranslated region (3′UTR) of target mRNAs. Furthermore, it inhibited the stabilizing function of Arid5a on Il23a 3′UTR, a newly identified target mRNA. In EAE, Flavipin ameliorated disease severity, with reduced CD4+IL-17+ T cells, IL-6 and TNF-α and increased CD4+FoxP3+ T cells. Moreover, EAE amelioration was concomitant with reduced CD4+OX40+ and CD4+CD45+ T cells in the CNS. RNA interference showed that the modulatory effects of Flavipin on pro- and anti-inflammatory mediators in CD4+ T cells and macrophages were Ahr- and/or Arid5a-dependent. In conclusion, our findings reveal differential modulation of Ahr and Arid5a as a new therapeutic strategy for MS.  相似文献   

17.
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells’ sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein–protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.  相似文献   

18.
19.
Aegle marmelos (L.) Correa is an Indian medicinal plant known for its vast therapeutic activities. In Ayurveda, the plant is known to balance “vata,” “pitta,” and “kapha” dosh. Recent studies suggest anti-inflammatory, anti-microbial, and anti-diabetic potential but lack in defining the dosage over the therapeutic activities. This study aims to determine the chemical profile of Aegle marmelos fruit extract; identification, enrichment, and characterization of the principal active component(s) having anti-inflammatory and anti-diabetic potential. Targeted enrichment of total coumarins, focusing on marmelosin, marmesin, aegeline, psoralen, scopoletin, and umbelliferone, was done from Aegle marmelos fruit pulp, and characterized using advanced high-throughput techniques. In vitro and in silico anti-diabetic and anti-inflammatory activities were assessed to confirm their efficacy and affinity as anti-diabetic and anti-inflammatory agents. The target compounds were also analysed for toxicity by in silico ADMET study and in vitro MTT assay on THP-1 and A549 cell lines. The coumarins enrichment process designed, was found specific for coumarins isolation as it resulted into 48.61% of total coumarins enrichment, which includes 31.2% marmelosin, 8.9% marmesin, 4% psoralen, 2% scopoletin, 1.7% umbelliferone, and 0.72% aegeline. The quantification with HPTLC and qNMR was found to be correlated with the HPLC assay results. The present study validates the potential use of Aegle marmelos as an anti-inflammatory and anti-diabetic agent. Coumarins enriched from the plant fruit have good therapeutic activity and can be used for Phytopharmaceutical ingredient development. The study is novel, in which coumarins were enriched and characterized by a simple and sophisticated methodology.  相似文献   

20.
The metastasis of cervical cancer has always been a clinical challenge. We investigated the effects of low-dose naltrexone (LDN) on the epithelial mesenchymal transition of cervical cancer cells in vitro as well as its influence on macrophage polarization and associated cytokines in vivo. The results suggested that LDN supressed the proliferation, migration and invasion abilities and promote their apoptosis in Hela cells, whereas the opioid growth factor receptor (OGFr) silenced significantly reversed these effects in vitro. Knockdown the expression of OGFr, the inhibitory of LDN on EMT was weakened. LDN could inhibit cervical cancer progression in nude mice. In additon, LDN indirectly reduced the number of tumor-associated macrophages (TAMs), mainly M2 macrophages, and decreased expression of anti-inflammatory factor IL-10 in the serum of nude mice. These findings demonstrate that LDN could be a potential treatment for cervical cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号