首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the relative contributions of molecular mobility and thermodynamic factor, the relationship between glass transition temperature (T(g)) and the crystallization rate was examined using amorphous dihydropyridines (nifedipine (NFD), m-nifedipine (m-NFD), nitrendipine (NTR) and nilvadipine (NLV)) with differing T(g) values. The time required for 10% crystallization, t(90), was calculated from the time course of decreases in the heat capacity change at T(g). The t(90) of NLV and NTR decreased with decreases in T(g) associated with water sorption. The t(90) versus T(g)/T plots almost overlapped for samples of differing water contents, indicating that the crystallization rate is determined by molecular mobility as indicated by T(g). In contrast, differences in the crystallization rate between these four drugs cannot be explained only by molecular mobility, since the t(90) values at a given T(g)/T were in the order: NLV>NTR>NFD approximately m-NFD. A lower rate was obtained for amorphous drugs with lower structural symmetry and more bulky functional groups, suggesting that these factors are also important. Furthermore, the crystallization rate of NTR in solid dispersions with poly(vinylpyrrolidone) (PVP) and hydroxypropyl methylcellulose (HPMC) decreased to a greater extent than expected from the increased T(g). This also suggests that factors other than molecular mobility affect the crystallization rate.  相似文献   

2.
The aim of the present study is to determine if the correlation between molecular mobility and crystallization growth rates exists over a broad temperature range from temperatures below the glass transition (T(g)) to temperatures above the glass transition. Phenobarbital and solid dispersions of phenobarbital with PVP and L-proline were studied in this research. Relaxation times below and above the T(g) were measured. Crystallization was followed in a hot-stage microscope and crystal growth rates were measured by observing radial growth of a single crystal. Arrhenius type temperature dependences were found both in relaxation times and crystal growth rates over studied temperature ranges, in all cases studied except in the case of pure phenobarbital, where a change of slope was observed for the crystal growth rate for the temperature range below T(g). For all cases, molecular mobility was correlated with crystal growth rate, for the temperature range studied, with a coupling coefficient of 0.38 for phenobarbital, and 0.23 and 0.28 for solid dispersions with PVP and proline respectively. By establishing the coupling between molecular mobility and crystal growth rate, predictive models can be created to estimate the stability of amorphous materials both, for pure form as well as for solid dispersions.  相似文献   

3.
To gain further insight into the effect of molecular mobility on the crystallization rate of amorphous drugs, the mean relaxation times of amorphous nifedipine and phenobarbital were calculated based on the Adam-Gibbs-Vogel (AGV) equation, using the parameters D, T(0), and T(f), derived from the heating rate dependence of the glass transition temperature (T(g)) of the amorphous drugs and heat capacity of the drugs in the amorphous and crystalline states. These relaxation times were compared with the crystallization rate of amorphous nifedipine and phenobarbital reported previously. The spin-lattice relaxation time (T(1)) and the spin-lattice relaxation time in the rotating frame (T(1rho)) of phenobarbital and nifedipine carbons were also determined. The temperature dependence of the crystallization rate of nifedipine and phenobarbital on the T(g) was coincident with that of the mean relaxation time calculated according to the AGV equation within experimental error, indicating that the crystallization of nifedipine and phenobarbital is largely correlated with molecular mobility at the temperatures studied. A (13)C nuclear magnetic resonance relaxation study indicated that the molecular motion of nifedipine and phenobarbital in the mid-kHz frequency range became significant at temperatures higher than T(g)-20 and T(g), respectively.  相似文献   

4.
The inhibition of crystallization of amorphous acetaminophen (ACTA) by polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) was studied using amorphous solid dispersions prepared by melt quenching. Co-melting with PVP and PAA decreased the average molecular mobility, as indicated by increases in glass transition temperature and enthalpy relaxation time. The ACTA/PAA dispersion exhibited much slower crystallization than the ACTA/PVP dispersion with a similar glass transition temperature value, indicating that interaction between ACTA and polymers also contributed to the stabilizing effect of these polymers. The carboxyl group of PAA may interact with the hydroxyl group of ACTA more intensely than the carbonyl group of PVP does, resulting in the stronger stabilizing effect of PAA. Dielectric relaxation spectroscopy showed that the number of water molecules tightly binding to PVP per monomer unit was larger than that to PAA. Furthermore, a small amount of absorbed water decreased the stabilizing effect of PVP, but not that of PAA. These findings suggest that the stronger stabilizing effect of PAA is due to the stronger interaction with ACTA. The ability of PAA to decrease the molecular mobility of solid dispersion was also larger than that of PVP, as indicated by the longer enthalpy relaxation time.  相似文献   

5.
Amorphous nifedipine-PVP and phenobarbital-PVP solid dispersions with various drug contents were prepared by melting and subsequent rapid cooling of mixtures of PVP and nifedipine, or phenobarbital. Chemical shifts and spin-lattice relaxation times (T(1)) of PVP, nifedipine, and phenobarbital carbons were determined by (13)C-CP/MAS NMR to elucidate drug-PVP interactions and the localized molecular mobility of drug and PVP in the solid dispersions. The chemical shift of the PVP carbonyl carbon increased as the drug content increased, appearing to reach a plateau at a molar ratio of drug to PVP monomer unit of approximately 1:1, suggesting hydrogen bond interactions between the PVP carbonyl group and the drugs. T(1) of the PVP carbonyl carbon in the solid dispersions increased as the drug content increased, indicating that the mobility of the PVP carbonyl carbon was decreased by hydrogen bond interactions. T(1) of the drug carbons increased as the PVP content increased, and this increase in T(1) became less obvious when the molar ratio of PVP monomer unit to drug exceeded approximately 1:1. These results suggest that the localized motion of the PVP pyrrolidone ring and the drug molecules is reduced by hydrogen bond interactions. Decreases in localized mobility appear to be one of the factors that stabilize the amorphous state of drugs.  相似文献   

6.
Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.  相似文献   

7.
The aim of this work is to determine if a stability testing protocol based on the correlations between crystallization onset and relaxation time above the glass transition temperature (Tg) can be used to predict the crystallization onsets in amorphous pharmaceutical systems well below their Tg. This procedure assumes that the coupling between crystallization onset and molecular mobility is the same above and below Tg. The stability testing protocol has been applied to phenobarbital, phenobarbital/polyvinylpyrrolidone (PVP) (95/5, w/w), and nifedipine/PVP (95/5, w/w). Crystallization onsets have been detected by polarized light microscopy examination of amorphous films; molecular mobility has been determined by dielectric relaxation spectroscopy above Tg and by both isothermal calorimetry and modulated differential scanning calorimetry below Tg. We find that small amounts of PVP significantly retard re-crystallization. This dramatic effect of PVP is not related to mobility, so this approach applies, at best, to extrapolation of high temperature data on a given formulation to low temperatures. Variation in molecular mobility at these concentrations of PVP is not the dominant factor in determining variation in propensity for re-crystallization from glassy systems; we suggest surface interactions between PVP and nuclei and/or small crystals slowing growth control variation in crystallization kinetics between formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3887-3900, 2010  相似文献   

8.
The effects of poly(vinylpyrrolidone) (PVP) molecular weight, composition, and content on the crystallization of a model drug, MK-0591 (Form I), were investigated. Solid dispersions of crystalline MK-0591 with PVP homopolymers of different molecular weights (2500-1 x 10(6) g/mol) and with a copolymer containing poly(vinyl acetate) (PVA), (PVP/VA, 60:40, 5.8 x 10(4) g/mol) were prepared by the solvent method. MK-0591 in the solid dispersions was found to be X-ray amorphous. One glass transition temperature (T(g)) was observed suggesting drug-polymer miscibility. The T(g) values were higher than predicted by the Gordon-Taylor equation, indicating drug-polymer interactions. The extent of crystallization inhibition increased with PVP molecular weight and, for a comparable PVP molecular weight, the homopolymer was more effective in the crystallization inhibition of the drug than the copolymer. The first onset temperature of crystallization (T(c)(obs)) increased with polymer content. The T(c)(obs) values (normalized to polymer content) were a function of the difference between the T(g) of the polymer and drug. For PVP K-90, K-30, and K-17 dispersions, the T(c)(obs) values increased proportionally to the T(g) of the dispersions. However, for PVP K-12 and PVP/VA, the increase in T(c)(obs) values corresponded to a small decrease in the T(g) values of the dispersions. This result suggests that additional factors other than the reduction in mobility affect the crystallization behavior of MK-0591 in the solid dispersions, such as specific interactions. By Fourier transform-infrared spectroscopy, changes in the carbonyl-stretching band of PVP in the solid dispersions were observed. The existence of an ion-dipole interaction between COO(-)Na(+) of the drug and the cyclic amide group of PVP was postulated.  相似文献   

9.
The objective of this study was to investigate the effect of preparation methods on the surface/bulk molecular mobility and glass fragility of solid dispersions. Solid dispersions containing indomethacin and PVP K30 were chosen as the model system. An inverse gas chromatography method was used to determine the surface structural relaxation of the solid dispersions and these data were compared to those for bulk relaxation obtained by DSC. The values of τ(β) for the surface relaxation were 4.6, 7.1 and 1.8h for melt quenched, ball milled and spray dried solid dispersions respectively, compared to 15.6, 7.9 and 9.8h of the bulk. In all systems, the surface had higher molecular mobility than the bulk. The glass fragility of the solid dispersions was also influenced by the preparation methods with the most fragile system showing the best stability. The zero mobility temperature (T(0)) was used to correlate with the physical stability of the solid dispersions. Despite having similar T(g) (65°C), the T(0) of the melt quenched, ball milled and spray dried samples were 21.6, -4.2 and 16.7°C respectively which correlated well with their physical stability results. Therefore, T(0) appears to be a better indicator than T(g) for predicting stability of amorphous materials.  相似文献   

10.
The ability of various polymers to inhibit the crystallization of amorphous felodipine was studied in amorphous molecular dispersions. Spin-coated films of felodipine with poly(vinylpyrrolidone) (PVP), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose (HPMC) were prepared and used for measurement of the nucleation rate and to probe drug-polymer intermolecular interactions. Bulk solid dispersions were prepared by a solvent evaporation method and characterized using thermal analysis. It was found that each polymer was able to significantly decrease the nucleation rate of amorphous felodipine even at low concentrations (3-25% w/w). Each polymer was found to affect the nucleation rate to a similar extent at an equivalent weight fraction. For HPMC and HPMCAS, thermal analysis indicated that the glass transition temperature (T(g)) of the solid dispersions were not significantly different from that of felodipine alone, whereas an increase in T(g) was observed for the PVP containing solid dispersions. Infrared spectroscopic studies indicated that hydrogen bonding interactions were formed between felodipine and each of the polymers. These interactions were stronger between felodipine and PVP than for the other polymers. It was speculated that, at the concentrations employed, the polymers reduce the nucleation rate through increasing the kinetic barrier to nucleation.  相似文献   

11.
Amorphous solid dispersions (ASDs) may entail tailor-made dosage form design to exploit their solubility advantage. Surface phenomena dominated the performance of amorphous celecoxib solid dispersion (ACSD) comprising of amorphous celecoxib (A-CLB), polyvinylpyrrolidone, and meglumine (7:2:1, w/w). ACSD cohesive interfacial interactions hindered its capsule dosage form dissolution (Puri V, Dhantuluri AK, Bansal AK 2011. J Pharm Sci 100:2460-2468). Furthermore, ACSD underwent significant devitrification under environmental stress. In the present study, enthalpy relaxation studies revealed its free surface to contribute to molecular mobility. Based on all these observations, barrier coated amorphous CLB solid dispersion layered particles (ADLP) were developed by Wurster process, using microcrystalline cellulose as substrate and polyvinyl alcohol (PVA), inulin, and polyvinyl acetate phthalate (PVAP) as coating excipients. Capsule formulations of barrier coated-ADLP could achieve rapid dispersibility and high drug release. Evaluation under varying temperature and RH conditions suggested the crystallization inhibitory efficiency in order of inulin < PVA ≈ PVAP; however, under only temperature treatment, crystallization inhibition increased with increase in T(g) of the coating material. Simulated studies using DSC evidenced drug-polymer mixing at the interface as a potential mechanism for surface stabilization. In conclusion, surface modification yielded a fast dispersing robust high drug load ASD based dosage form.  相似文献   

12.
PURPOSE: The purpose of the current study is to evaluate the solubility advantage offered by celecoxib (CEL) amorphous systems and to characterize and correlate the physical and thermodynamic properties of CEL and its amorphous molecular dispersions containing poly(vinylpyrrolidone) (PVP). METHODS: The measurement of crystalline content, glass transition temperatures, and enthalpy relaxation was performed using differential scanning calorimetry. Solubility and dissolutions studies were conducted at 37 degrees C to elucidate release mechanisms. Further, the amorphous systems were characterized by polarized light microscopy and X-ray powder diffraction studies. RESULTS: The PVP content has a prominent effect on the stability and solubility profiles of amorphous systems. A dispersion of 20% w/w PVP with CEL resulted in a maxima in terms of solubility enhancement and lowering of relaxation enthalpy. The release of drug from amorphous molecular dispersions was found to be drug-dependent and independent of the carrier. CONCLUSIONS: The solubility enhancement and enthalpy relaxation studies with respect to PVP concentration helped in a better prediction of role of carrier and optimization of concentration in the use of solid dispersions or amorphous systems. The drug release mechanism is drug-controlled rather than carrier-controlled.  相似文献   

13.
The main aim of the study was to investigate the mechanisms of the stabilizing effect of poly(vinylpyrrolidone) (PVP) on amorphous albendazole (ABZ). Solid dispersions of ABZ with PVP polymers and with a copolymer containing poly(vinylacetate) (PVP/VA) were prepared using the solvent casting method. The effects of PVP molecular weight, composition and content on the crystallization of ABZ from the amorphous state were investigated using differential scanning calorimetry. Stability of the amorphous drug with respect to isothermal crystallization was studied at different polymer concentrations and storage temperatures. Solid dispersions were found to be X-ray amorphous and exhibited a single glass transition temperature (Tg). Onset of crystallization and extent of inhibition increased with concentration and molecular weight of the homopolymer. In spite of its having a higher molecular weight, replacement of about 40% of vinylpyrrolidone monomers with vinylacetate groups (as in the copolymer) resulted in reduced inhibition of crystallization. ABZ crystallized from the amorphous state in the absence of polymer even when stored below the Tg. The solvent casting method greatly reduced the requirement for polymer to achieve X-ray amorphous solid dispersions. Such dispersions exhibited a significant increase in induction time and reduction in the rate of crystallization at polymer concentrations as low as 5% and at temperatures as high as 70 degrees C. Factors other than mobility, such as drug-polymer hydrogen bonding' were also found to be involved in crystallization inhibition.  相似文献   

14.
During the development of new pharmaceutical products based on drug substances in their amorphous form, the molecular mobility of an amorphous active ingredient was characterized in detail within a very broad time-temperature range. The relation between the isothermal crystallization kinetics and the dynamics of this amorphous substance was investigated. First, dynamic dielectric spectroscopy (DDS) and the thermostimulated current (TSC) techniques were used to analyze the molecular mobility of the amorphous drug substance over a wide frequency and temperature range (the drug substance is referred to as SSR in this text and was chosen as a model glass-forming system). Two relaxation processes, corresponding to different molecular motions, were identified. The beta(a)-relaxation process, associated with intramolecular oscillation of small dipolar groups, followed Arrhenius temperature behavior over the entire time-temperature domain that was studied. However, the main alpha(a)-relaxation process, assigned to the dielectric manifestation of the dynamic glass transition of the amorphous phase, was described by Vogel-Fulcher-Tammann (VFT) and Arrhenius behavior above and below the glass transition temperature (T(g)) respectively. The physical meaning of these complex dynamics is explained in the context of the Adam and Gibbs (AG) model, by the temperature dependence of the size of cooperatively rearranging regions (CRR) that govern the time scale of delocalized molecular motions. The distinction between the molecular mobility and the structural relaxation of amorphous systems below T(g) is discussed. This work shows that the complementary nature of both DDS and TSC techniques is essential to directly analyze the intramolecular and molecular motions of disordered phases over a wide time-temperature range above and below the T(g). Second, real-time dielectric measurements were carried out to determine the isothermal crystallization kinetics of the SSR amorphous drug. Whatever the crystalline form obtained over time in the crystallization process, the decrease of the dielectric response of amorphous phase, which is characteristic of the isothermal crystallization, was studied to monitor the time dependence of the degree of crystallinity. The characteristic crystallization time, derived from Kohlrausch-Williams-Watt (KWW)-Avrami analyses performed at different temperatures, followed an Arrhenius temperature dependence. Behaviors specific to the molecular mobility of the amorphous drug substance were compared with the characteristic crystallization time. It was concluded that the crystal growth process of the SSR drug seems to be controlled by the intramolecular motions involving the beta(a)-relaxation mode and not by the molecular motions responsible for the alpha(a)-relaxation mode in the range of temperatures >T(g). Subsequent studies will focus on the crystallization process of the SSR drug in the glassy state (T < T(g)).  相似文献   

15.
Properties of solid dispersions of piroxicam in polyvinylpyrrolidone.   总被引:5,自引:0,他引:5  
Solid dispersions of piroxicam were prepared with polyvinylpyrrolidone (PVP) K-17 PF and PVP K-90 by solvent method. The physical state and drug:PVP interaction of solid dispersions and physical mixtures were characterized by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). FTIR analysis demonstrated the presence of intermolecular hydrogen bonding between piroxicam and PVP in solid dispersions. These interactions reflected the changes in crystalline structures of piroxicam. The amorphousness within the PVP moeity might be predicted in piroxicam dispersions by the disappearance of N-H or O-H peak of piroxicam. Dissolution studies indicated a significant increase in dissolution of piroxicam when dispersed in PVP. The better results were obtained with the lower molecular weight PVP K-17 than with higher molecular weight PVP K-90. The non-amorphous solid dispersions in PVP K-17 showed almost equally fast dissolution rates to amorphous dispersions in PVP K-90. The mechanism of dissolution of solid dispersion in PVP K-90 is predominantly diffusion-controlled due to the very high viscosity of PVP K-90. Dissolution was maximum with the amorphous solid dispersions containing drug:PVP K-17 1:5 and 1:6 which showed a 40-fold increase in dissolution in 5 min as compared with pure drug. Copyright  相似文献   

16.
Water vapor absorption isotherms were measured for three amorphous hydrophobic drug/poly(vinylpyrrolidone) (PVP) dispersions in the concentration range 10-90% w/w PVP. Experimental isotherms were compared to predicted isotherms calculated using each individual component isotherm multiplied by its weight fraction. Indomethacin (IMC)/PVP, ursodeoxycholic acid (UDCA)/PVP and indapamide (IDP)/PVP amorphous dispersions all exhibited experimental isotherms reduced relative to predicted isotherms indicating that dispersion formation altered the water vapor absorption properties of the individual components. For all three drug/PVP systems, deviation from predicted water uptake was greatest close to the 1:1 drug:PVP monomer composition, indicating that intermolecular interaction in amorphous dispersions affects the water uptake properties of the individual components. Using dry glass transition temperature (T(g)) data, the extent of drug/PVP interaction was shown to be greatest in the IDP/PVP system, which could explain why the largest reduction in water vapor absorption was found in this system. The plasticizing effect of absorbed water varied according to dry dispersion PVP content in all systems and the resulting nonideal changes in free volume, calculated using the Vrentas model, were greatest close to the 1:1 drug:PVP monomer composition. A three-component Flory-Huggins model successfully predicted isotherms for IMC/PVP compositions from 60 to 90% w/w PVP and identified an IMC-PVP interaction parameter chi in the range 1.27-1.49, values that suggest poor homogeneity of mixing in the dry system. These data indicate that amorphous dispersion formation causes both chemical and physical changes in the individual amorphous components that can have a significant effect on their water vapor absorption properties.  相似文献   

17.
Purpose. To measure solid-state features of amorphous molecular dispersions of indomethacin and various molecular weight grades of poly(vinylpyrrolidone), PVP, and poly(vinylpyrrolidone-co-vinylacetate), PVP/VA, in relation to isothermal crystallization of indomethacin at 30°C Methods. The glass transition temperatures (Tg) of molecular dispersions were measured using differential scanning calorimetry (DSC). FT-IR spectroscopy was used to investigate possible differences in interactions between indomethacin and polymer in the various dispersions. The enthalpy relaxation of 5% w/w and 30% w/w polymer dispersions was determined following various aging times. Quantitative isothermal crystallization studies were carried out with pure indomethacin and 5% w/w polymers in drug as physical mixtures and molecular dispersions. Results. All coprecipitated mixtures exhibited a single glass transition temperature. All polymers interacted with indomethacin in the solid state through hydrogen bonding and in the process eliminated the hydrogen bonding associated with the carboxylic acid dimers of indomethacin. Molecular mobility at 16.5°C below Tg was reduced relative to indomethacin alone, at the 5% w/w and 30% w/w polymer level. No crystallization of indomethacin at 30°C was observed in any of the 5% w/w polymer molecular dispersions over a period of 20 weeks. Indomethacin alone and in physical mixtures with various polymers completely crystallized to the form at this level within 2 weeks. Conclusions. The major basis for crystal inhibition of indomethacin at 30°C at the 5% w/w polymer level in molecular dispersions is not related to polymer molecular weight and to the glass transition temperature, and is more likely related to the ability to hydrogen bond with indomethacin and to inhibit the formation of carboxylic acid dimers that are required for nucleation and growth to the crystal form of indomethacin.  相似文献   

18.
In this study, a new and robust method was evaluated to prepare physically stable solid dispersions. Trehalose, sucrose, and two inulins having different chain lengths were used as carrier. Diazepam, nifedipine, Delta(9)-tetrahydrocannabinol, and cyclosporine A were used as model drugs. The sugar was dissolved in water and the drug in tertiary butyl alcohol (TBA). The two solutions were mixed in a 4/6 TBA/water volume ratio and subsequently freeze dried. Diazepam could be incorporated at drug loads up to 63% w/w. DSC measurements showed that, except in some sucrose dispersions, 97-100% of the diazepam was amorphous. In sucrose dispersions with high drug loads, about 10% of the diazepam had crystallised. After 60 days of exposure at 20 degrees C and 45% relative humidity (RH), diazepam remained fully amorphous in inulin dispersions, whereas in trehalose and sucrose crystallization of diazepam occurred. The excellent physical stability of inulin containing solid dispersions can be attributed to the high glass transition temperature (T(g)) of inulin. For the other drugs similar results were obtained. The residual amount of the low toxic TBA was only 0.1-0.5% w/w after freeze drying and exposure to 45% RH and 20 degrees C. Therefore, residual TBA will not cause any toxicity problems. This study provides a versatile technique, to produce solid dispersions. Inulin glasses are preferred because they provide an excellent physical stability of the incorporated amorphous lipophilic drugs.  相似文献   

19.
To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.  相似文献   

20.
The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous–amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous–amorphous phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号