首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
  1. It was hypothesized that cis-resveratrol glucuronidation contributes to a greater extent to in-vitro disposition of total resveratrol than previously assumed. To this end, the kinetic data for cis-resveratrol glucuronidation are reported.

  2. Glucuronidation assays were conducted in human liver and intestinal microsomes and in uridine diphosphate-glucuronosyltransferases (UGTs) UGT1A1, UGT1A6, UGT1A9, and UGT1A10. Kinetic parameters were estimated for the major cis-resveratrol-3-O-glucuronide (cis-R3G). Substrate inhibition was observed with apparent Vmax, Km and Ki of 6.1?±?0.3/27.2?±?1.2 nmol min?1 mg?1, 415?±?48.1/989.9?±?92.8 and 789.6?±?76.3/1012?±?55.9?μM in human intestinal microsomes (HIMs) and UGT1A6, respectively (estimate?±?standard error (SE)). Biphasic kinetics were observed in human liver microsomes (HLMs), while sigmoidal kinetics were seen in UGT1A9 (Vmax?=?11.92?±?0.2 nmol min?1 mg?1; Km?=?360?μM; n?=?1.27?±?0.07). The 4′-O-glucuronide (cis-R4′G) exhibited atypical kinetics in HLM, HIM, UGT1A1, and UGT1A10. UGT1A9 catalysed cis-R4′G formation at high substrate concentrations (Vmax?=?0.33?±?0.015 nmol min?1 mg?1; Km?=?537.8?±?67.8?μM).

  3. In conclusion, although the rates of formation of cis-R3G in HLM and UGT1A9 were higher than those for trans-R3G, the contribution to total resveratrol disposition could not be determined fully due to atypical kinetics observed.

  相似文献   

2.
1. Quercetin is one of the most abundant flavonoids in edible vegetables, fruit and wine. The aim was to study the type of inhibition of SULT1A1 by quercetin in the human adult and foetal livers. 2. The activity of SULT1A1 was measured with 4 µM 4-nitrophenol and 0.4 µM 3'-phosphoadenosine-5'-phosphosulphate-[35S], and its mean (± SD) and median were 769 ± 311 and 740 pmol min?1 mg?1, respectively (adult liver, n = 10), and 185 ± 98 and 201 pmol min?1 mg?1, respectively (foetal liver, n = 8, p < 0.0001). 3. In non-inhibited samples, Km for SULT1A1 (mean ± SD) was 0.31 ± 0.14 µM (adult liver) and 0.49 ± 0.17 µM (foetal liver, n.s.). Vmax for SULT1A1 (mean ± SD) was 885 ± 135 pmol min?1 mg?1 (adult liver) and 267 ± 93 pmol min?1 mg?1 (foetal liver, p = 0.007). 4. The IC50 of quercetin for SULT1A1 was measured in three samples of adult and foetal livers and was 13 ± 2.1 and 12 ± 1.4 nM, respectively. 5. The type of inhibition was mixed non-competitive in adult and foetal livers and Ki was 4.7 ± 2.5 nM (adult liver) and 4.8 ± 1.6 nM (foetal liver). 6. In the adult liver, the intrinsic clearance (mean ± SD) was 3.3 ± 1.5 ml min?1 mg?1 (non-inhibited samples), 0.9 ± 0.4 ml min?1 mg?1 (12.5 nM quercetin) and 0.5 ± 0.06 ml min?1 mg?1 (25 nM quercetin). In the foetal liver, the intrinsic clearance (mean ± SD) was 0.5 ± 0.2 ml min?1 mg?1 (non-inhibited samples), 0.12 ± 0.01 ml min?1 mg?1 (12.5 nM quercetin) and 0.2 ± 0.09ml min?1 mg?1 (25nM quercetin). 7. In conclusion, quercetin is a potent inhibitor of human adult and foetal liver SULT1A1. It reduces the sulphation rate and intrinsic clearance of 4-nitrophenol in both human adult and foetal livers. This suggests that quercetin may inhibit the sulfation rate of those drugs sulphated by SULT1A1. The inhibition of SULT1A1 is complex and not due solely to competition at the catalytic site of SULT1A1.  相似文献   

3.
The aim was to assess the inhibitory effect of a series of naturally occurring trans-resveratrol analogues on cytochromes P450, namely CYP1A2 and CYP2E1, in vitro in order to analyse any structure–activity relationships. 3,5-Dimethoxy-4′-hydroxy-trans-stilbene (pterostilbene), 3,4′,5-trimethoxy-trans-stilbene (TMS), 3,4′-dihydroxy-5-methoxy-trans-stilbene (3,4′-DH-5-MS) and 3,5-dihydroxy-4′-methoxy-trans-stilbene (3,5-DH-4′-MS) inhibited the activity of CYP1A2, with Ki?=?0.39, 0.79, 0.94 and 1.04?µM, respectively. Piceatannol (3,3′,4,5′-tetrahydroxy-trans-stilbene) was the least potent inhibitor of CYP1A2 with a Ki?=?9.67?µM. Piceatannol and TMS in the concentration range 1–100?µM did not inhibit CYP2E1 activity. The activity of this enzyme likewise was not significantly influenced by pterostilbene and 3,5-DH-4′-MS with IC50?>?100?µM, whereas 3,4′-DH-5-MS appeared to be a moderately potent, competitive inhibitor of CYP2E1 (Ki?=?42.6?µM). Structure–activity relationship analysis leads to the conclusion that the substitution of hydroxy groups of resveratrol with methoxy groups increases the inhibition of CYP1A2, yet the number and position of methylation are not essential. However, the 4′-hydroxy group in trans-resveratrol and its analogues may play an important role in the interaction with a binding site of CYP2E1.  相似文献   

4.
  1. Human sulfotransferase 2A1 (SULT2A1) is a member of the hydroxysteroid sulfotransferase (SULT2) family that mediates sulfo-conjugation of a variety of endogenous molecules including dehydroepiandrosterone (DHEA) and bile acids. In this study, we have constructed a stable cell line expressing SULT2A1 by transfection into HEK293 cells. The expression system was used to characterize and compare the sulfation kinetics of DHEA and 15 human bile acids by SULT2A1.

  2. Formation of DHEA sulfate demonstrated Michaelis–Menten kinetics with apparent Km and Vmax values of 3.8?μM and 130.8 pmol min?1 mg?1 protein, respectively. Sulfation kinetics of bile acids also demonstrated Michaelis–Menten kinetics with a marked variation in apparent Km and Vmax values between individual bile acids.

  3. Sulfation affinity was inversely proportional to the number of hydroxyl groups of bile acids. The monohydroxy- and most toxic bile acid (lithocholic acid) had the highest affinity, whereas the trihydroxy- and least toxic bile acid (cholic acid) had the lowest affinity to sulfation by SULT2A1. Intrinsic clearance (CLint) of ursodeoxycholic acid (UDCA) was approximately 1.5- and 9.0-fold higher than that of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA), respectively, despite the fact that all three are dihydroxy bile acids.

  相似文献   

5.
1. Dietary flavonoids including kaempferol, quercetin, genistein and daidzein were tested for their ability to alter the conjugation of oestradiol (E2) via rat liver sulfotransferases and glucuronosyltransferase.

2. All four flavonoids inhibited the sulfonation of E2 via phenol sulfotransferase, SULT1A1 with IC50s ranging from 0.29 to 4.61?µM. Sulfonation of dehydroisoandrosterone (DHEA) via hydroxysteroid sulfotransferase, SULT2A1, was inhibited by higher amounts of the flavonoids (IC50s ranging from 34 to 116?µM).

3. All flavonoids inhibited the formation of E2-β-glucuronides (at carbon atoms 3 and 17) with IC50s ranging from 43 to 260?µM. Glucuronidation of 4-methylumbelliferone (4-MU) was inhibited by high amounts of the flavonoids (IC50s ranging from 860 to 1550?µM).

4. Hydrolysis of sulfonated oestrogens via arylsulfatase-c (ARSC) or 4-methylumbelliferone β-glucuronidate (MUG) were not inhibited by the flavonoids.

5. It is concluded that SULT1A1 but not SULT2A1 or glucuronosyltransferase is highly sensitive to inhibition by dietary flavonoids. The potency of the inhibition for SULT1A1 (quercetin > kaempferol > genistein > daidzein) suggests a dependency on the number and position of hydroxyl radicals in the flavonoid molecule.  相似文献   

6.
1.?Human cytosolic sulfotransferase 1B1 (SULT1B1) sulfates small phenolic compounds and bioactivates polycyclic aromatic hydrocarbons. To date, no SULT1B1 allelic variants have been well-characterized.

2.?While cloning SULT1B1 from human endometrial specimens, an allelic variant resulting in valine instead of leucine at the 145th amino acid position (L145V) was detected. NCBI reported this alteration as the highest frequency SULT1B1 allelic variant.

3.?L145V frequency comprised 9% of 37 mixed-population human patients and was specific to African Americans with an allelic frequency of 25%. Structurally, replacement of leucine with valine potentially destabilizes a conserved helix (α8) that forms the “floor” of both the substrate and PAPS binding domains. This destabilization results in altered kinetic properties including a four-fold decrease in affinity for PAP (3′, 5′-diphosphoadenosine). Kms for 3′-phosphoadenosine- 5′-phosphosulfate (PAPS) are similar; however, maximal turnover rate of the variant isoform (0.86?pmol/(min*μg)) is slower than wild-type (WT) SULT1B1 (1.26?pmol/(min*μg)). The L145V variant also displays altered kinetics toward small phenolic substrates, including a diminished p-nitrophenol Km and increased susceptibility to 1-naphthol substrate inhibition.

4.?No significant correlation between genotype and prostate or colorectal cancer was observed in patients; however, the variant isoform could underlie specific pathologies in sub-Saharan African carriers.  相似文献   

7.
1. The relative roles of various members of the human sulfotransferase (SULT) enzyme family in the metabolism of apomorphine, a dopamine receptor antagonist used in the treatment of Parkinson's disease and, more recently, erectile dysfunction, were examined. In humans, sulfation is the major route of metabolism of this drug.

2. Using recombinant SULTs expressed in Escherichia coli, R(–)-apomorphine sulfation was studied using the universal barium precipitation assay in the presence of [35S] 3′-phosphoadenosine 5′-phosphosulfate and SULTs 1A1, 1A2, 1A3, 1B1, 1C2, 1E1 and 2A1. It was shown that SULTs 1A1, 1A2, 1A3 and 1E1 all sulfated apomorphine to varying extents. Low activity with SULT1B1 was only seen at the highest concentration (100?μM) and no activity with SULT1C2 or SULT2A1 was observed.

3. Kinetic analysis using purified recombinant SULTs showed that 1A1, 1A3 and 1E1 all had similar Vmax/Km values, although SULT1E1 had a slightly lower Km at around 1 μM compared with approximately 4 μM for the other SULTs.

4. By correlating apomorphine sulfation (at 10?μM) in a bank of 28 liver cytosols with SULT activity towards 10?μM 4-nitrophenol (SULT1A1) and 0.2?μM 17β-oestradiol (SULT1E1), a strong correlation with SULT1A1 activity was clearly demonstrated, suggesting this enzyme was primarily responsible for hepatic apomorphine sulfation.

5. These findings were confirmed using immuno-inhibition experiments with antibodies against SULT1A and SULT1E1, which showed preferential inhibition of apomorphine sulfation in human liver cytosol by anti-SULT1A.

6. The results strongly implicate SULT1A1 as the major enzyme responsible for hepatic apomorphine metabolism. As SULT1A1 is subject to a common functional polymorphism, sulfation phenotype may be an important determinant of susceptibility to side-effects of apomorphine and/or efficacy of treatment.  相似文献   

8.
Abstract

1.?Cattle are an important component of the human food chain. Drugs used either legally or illegally in cattle may therefore enter the food chain and it is thus important to understand pathways of drug metabolism in this species, including sulfation catalyzed by the sulfotransferases (SULTs).

2.?In this study, we have analyzed the sulfation of 4-nitrophenol and other compounds in male and female bovine liver and characterized recombinant bovine SULT isoforms 1A1 and 1B1 expressed in Escherichia coli.

3.?We found that, in contrast to most other mammalian species, the major phenol sulfotransferase SULT1A1 is not expressed in bovine liver. Rather SULT1B1 seems to be a major form in both male and female bovine liver.

4.?We also identified kinetic differences between bovine and human SULT1A1 and, using the human SULT1A1 crystal structure, identified two amino acid positions in the active site of bovine SULT1A1 (Ile89Val and Phe247Val) that may be responsible for these differences.  相似文献   

9.
1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. Resveratrol is sulphated, and the hepatic and duodenal sulphation might limit the bioavailability of this compound. The aim of this study was to see whether natural flavonoids present in wine, fruits and vegetables inhibit the sulphation of resveratrol in the human liver and duodenum. 2. In the liver, IC50 for the inhibition of resveratrol sulphation was 12 ± 2 pM (quercetin), 1.0 ± 0.04 μM (fisetin), 1.4 ± 0.1 μM (myricetin), 2.2 ± 0.1 μM (kaempferol) and 2.8 ± 0.2 μM (apigenin). Similarly, in the duodenum, IC50 was 15 ± 2 pM (quercetin), 1.3 ± 0.1 μM (apigenin), 1.3 ± 0.5 μM (fisetin), 2.3 ± 0.1 μM (kaempferol) and 2.5 ± 0.3 μM (myricetin). 3. The type of inhibition of quercetin on resveratrol sulphation was studied in three liver samples and was determined to be non-competitive and mixed in nature. Km (mean ± SD; μM) was 0.23 ± 0.07 (control), 0.40 ± 0.08 (5 pM quercetin) and 0.56 ± 0.09 (10 pM quercetin). Vmax (mean ± SD; pmol·min?1·mg?1) was 99 ± 11 (control), 73 ± 15 (5 pM quercetin) and 57 ± 10 (10 pM quercetin). K1 and K1es estimates (mean ± SD) were 3.7 ± 1.8 pM and 12.1 ± 1.7 pM respectively (p = 0.010). 4. Chrysin was a substrate for the sulphotransferase(s) and an assay was developed for measuring the chrysin sulphation rate in human liver. The enzyme followed Michaelis‐Menten kinetics and Km and Vmax (mean ± SD) measured in four livers were 0.29 ± 0.07 μM and 43.1 ± 1.9 pmol·min?1·mg?1 respectively. 5. Catechin was neither an inhibitor of resveratrol sulphation nor a substrate of sulphotransferase. 6. These results are consistent with the view that many, but not all, flavonoids inhibit the hepatic and duodenal sulphation of resveratrol, and such inhibition might improve the bioavailability of this compound.  相似文献   

10.
The metabolism of 3′,4′-methylenedioxy-α-pyrrolidinopropiophenone (MDPPP), a novel designer drug, to its demethylenated major metabolite 3′,4′-dihydroxy-pyrrolidinopropiophenone (di-HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes. CYP2C19 catalysed the demethylenation with apparent Km and Vmax values of 120.0?±?13.4?µM and 3.2?±?0.1?pmol/min/pmol?CYP, respectively (mean?±?standard deviation). CYP2D6 catalysed the demethylenation with apparent Km and Vmax values of 13.5?±?1.5?µM and 1.3?±?0.1 pmol/min/pmol?CYP, respectively. HLM exhibited a clear biphasic profile with an apparent Km,1 value of 7.6?±?9.0 and a Vmax,1 value of 11.1?±?3.6?pmol/min/mg?protein, respectively. Percentages of intrinsic clearances of MDPPP by specific CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4′-hydroxylation or bufuralol-1′-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively. MDPPP, di-HO-PPP and the standard 4′-methyl-pyrrolidinohexanophenone (MPHP) were separated and analysed by liquid chromatography-mass spectrometry in the selected-ion monitoring (SIM) mode. The CYP2D6-specific chemical inhibitor quinidine (3?µM) significantly (p?相似文献   

11.
Aims: To determine the allele frequencies of sulfotransferases (SULTs) 1A1 and 1A2 and their linkage disequilibrium in a Korean population and compare them with those of other ethnic groups. Methods: Genotypes of the SULT1A1*1, *2, and *3 and SULT1A2*1, *2, and *3 allelic variants were determined in 234 Korean subjects using polymerase chain reaction (PCR)–restriction fragment length polymorphism (RFLP) methods. Results: Allele frequencies for SULT1A1*1 and *2 were 0.876 [95% confidence interval (CI), 0.843–0.905] and 0.124 (95% CI, 0.096–0.157), respectively. Similarly, those for SULT1A2*1 and *2 were 0.885 (95% CI, 0.852–0.912) and 0.115 (95% CI, 0.088–0.150), respectively. However, no subject with SULT1A1*3 or SULT1A2*3 was detected. These genotype distributions are similar to those of Asian populations including the Chinese and Japanese, but quite different from other ethnic groups such as African-Americans and Caucasians. The expected allelic frequencies of SULT1A1 and SULT1A2 at Hardy–Weinberg equilibrium are quite similar to the observed distributions in the population. SULT1A1*2 and SULT1A2*2, the most common variant alleles of these two genes, are strongly and positively linked in the Korean population (D′=0.8919, χ2 =343.24, P=0.0034). Conclusions: SULT1A1*2 and SULT1A2*2 are the major allelic variants in the Korean population, whereas the SULT1A1*3 and SULT1A2*3 alleles were not found. SULT1A1*2 and SULT1A2*2 are strongly linked.  相似文献   

12.
1.?The aim of this work was to examine the differences in the inhibitory potency of individual enantiomers and racemic mixtures of selected chiral drugs on human liver microsomal cytochromes P450.

2.?The interaction of enantiomeric forms of six drugs (tamsulosin, tolterodine, citalopram, modafinil, zopiclone, ketoconazole) with nine cytochromes P450 (CYP3A4, CYP2E1, CYP2D6, CYP2C19, CYP2C9, CYP2C8, CYP2B6, CYP2A6, CYP1A2) was examined. HPLC methods were used to estimate the extent of the inhibition of specific activity in vitro.

3.?Tamsulosin (TAM) and tolterodine (TOL) inhibited CYP3A4 activity with an enantiospecific pattern. The inhibition of CYP3A4 activity differed for R-TAM (Ki 2.88?±?0.12?µM) and S-TAM (Ki 14.22?±?0.53?µM) as well as for S-TOL (Ki 1.71?±?0.03?µM) and R-TOL (Ki 4.78?±?0.17?µM). Also, the inhibition of CYP2C19 by ketoconazole (KET) cis-enantiomers exhibited enantioselective behavior: the (+)-KET (IC50 23.64?±?6.25?µM) was more potent than (?)-KET (IC50 66.12?±?12.6?µM). The inhibition of CYP2C19 by modafinil (MOD) enantiomers (R-MOD IC50?=?51.79?±?8.58?µM, S-MOD IC50?=?48.62?±?9.74?µM) and the inhibition of CYP2D6 by citalopram (CIT) enantiomers (R-CIT IC50?=?68.17?±?5.70?µM, S-CIT IC50?=?62.63?±?7.89?µM) was not enantiospecific.

4.?Although enantiospecific interactions were found (TAM, TOL, KET), they are probably not clinically relevant as the plasma levels are generally lower than the drug concentration needed for prominent inhibition (at least 50% of CYP activity).  相似文献   

13.
Although the authors recently reported that nafamostat, a clinically used serine protease inhibitor, was mainly hydrolysed by carboxylesterase in human liver microsomes, the involvement of human liver cytosol has not been elucidated. The current study examined the in vitro metabolism of nafamostat with human liver cytosols. Kinetic analysis indicated that the Vmax and Km values in the liver cytosols were 9.82?nmol?min?1?mg?1 protein and 197?µM for a liver sample HL-1, and 15.1?nmol?min?1?mg?1 protein and 157?µM for HL-2, respectively. The Vmax/Km values in both cytosols were at least threefold higher than those in the corresponding microsomes. The liver cytosolic activity for nafamostat hydrolysis was inhibited by phenylmethylsulfonyl fluoride (PMSF) (43% inhibition at 100?µM), whereas diisopropyl fluorophosphate (DFP) and bis(p-nitrophenyl)phosphate (BNPP) failed to inhibit the activity. Furthermore, the hydrolytic activity was also reduced by palmitoyl-CoA (67% inhibition at 100?µM) but not by acetyl-CoA. Effects of PMSF, DFP and BNPP on cytosolic palmitoyl-CoA hydrolytic activity were comparable with those of the cytosolic nafamostat hydrolytic activity. In addition, the palmitoyl-CoA hydrolytic activity was competitively inhibited by nafamostat with the apparent Ki value of 164?µM for the liver cytosol from HL-2. These results suggest that an isoform of long-chain acyl-CoA hydrolase may be responsible for the nafamostat hydrolysis in human liver cytosol.  相似文献   

14.
Veratramine, a steroidal alkaloid originating from Veratrum nigrum L., has demonstrated distinct anti‐tumor and anti‐hypertension effects, however, its metabolism has rarely been explored. The objective of the current study was to provide a comprehensive investigation of its metabolic pathways. The in vitro metabolic profiles of veratramine were evaluated by incubating it with liver microsomes and cytosols. The in vivo metabolic profiles in plasma, bile, urine and feces were monitored by UPLC‐MS/MS after oral (20 mg/kg) and i.v. (50 µg/kg) administration in rats. Meanwhile, related P450s inhibitors and recombinant P450s and SULTs were used to identify the isozymes responsible for its metabolism. Eleven metabolites of veratramine, including seven hydroxylated, two sulfated and two glucuronidated metabolites, were characterized. Unlike most alkaloids, the major reactive sites of veratramine were on ring A and B instead of on the amine moiety. CYP2D6 was the major isozyme mediating hydroxylation, and substrate inhibition was observed with a Vmax, Ki and Clint of 2.05 ± 0.53 nmol/min/mg, 33.08 ± 10.13 µ m and 13.58 ± 1.27 µL/min/mg. SULT2A1, with Km, Vmax and Clint values of 19.37 ± 0.87 µ m , 1.51 ± 0.02 nmol/min/mg and 78.19 ± 8.57 µL/min/mg, was identified as the major isozyme contributing to its sulfation. In conclusion, CYP2D6 and SULT2A1 mediating hydroxylation and sulfation were identified as the major biotransformation for veratramine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
1. The metabolism of 4′-methoxy-α-pyrrolidinopropiophenone (MOPPP), a novel designer drug, to its demethylated major metabolite 4′-hydroxy-pyrrolidinopropio-phenone (HO-PPP) was studied in pooled human liver microsomes (HLM) and in cDNA-expressed human hepatic cytochrome P450 (CYP) enzymes.

2. CYP2C19 catalysed the demethylation with apparent Km and Vmax values of 373.4 ± 45.1?μM and 6.0 ± 0.3?pmol?min?1?pmol?1 CYP, respectively (mean ± SD). Both CYP2D6 and HLM exhibited clear biphasic profiles with apparent Km,1 values of 1.3 ± 0.4 and 22.0 ± 6.5?μM, respectively, and Vmax,1 values of 1.1 ± 0.1 pmol?min?1?pmol?1 CYP and 169.1 ± 20.5?pmol?min?1?mg?1 protein, respectively.

3. Percentages of intrinsic clearances of MOPPP by particular CYPs were calculated using the relative activity factor (RAF) approach with (S)-mephenytoin-4′-hydroxylation or bufuralol-1′-hydroxylation as index reactions for CYP2C19 or CYP2D6, respectively.

4. MOPPP, HO-PPP and the standard 3′,4′-methylenedioxy-pyrrolidinopropio-phenone (MDPPP) were separated and analysed by liquid chromatography–mass spectrometry in the selected-ion monitoring (SIM) mode.

5. The CYP2D6 specific chemical inhibitor quinidine (3?μM) significantly (?p<0.0001) inhibited HO-PPP formation by 91.8 ± 0.5% (mean ± SEM) in incubation mixtures with HLM and 2?μM MOPPP.

6. It can be concluded from the data obtained from kinetic and inhibition studies that polymorphically expressed CYP2D6 is the enzyme mainly responsible for MOPPP demethylation.  相似文献   

16.
Abstract

1.?Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown.

2.?We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined.

3.?A single-enzyme Michaelis–Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n?=?5) and recombinant CYP2C8 kinetic data (median?±?SD Ki?=?139?±?61?µM and 149?µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median?±?SD Km?=?6?±?2 versus 11?±?2?µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km?=?4?µM) and single-enzyme weak autoinhibition (Ki?=?449?µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47–75%, compared to 0–30% for CYP3A4 inhibitors.

4.?In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.  相似文献   

17.
The aim of this study was to study the effect of 1-aminobenzotriazole (ABT) on in vitro metabolism, oral, and intravenous (IV) pharmacokinetics of chlorzoxazone (CZX) in rats. Enzyme kinetics of CZX was performed with rat and human liver microsomes and pure isozyme (CYP2E1) with and without ABT. The enzyme kinetics (Vmax and Km) of the formation of 6-hydroxychlorzoxazone (OH-CZX) was found to be similar among rat liver microsomes (3486?pmol?mg?protein?1?min?1 and 345?µM), human liver microsomes (3194?pmol?mg?protein?1?min?1 and 335?µM) and pure isozyme (3423?pmol?mg?protein?1?min?1 and 403?µM), but KI and Kinact values for ABT towards the ability to inhibit the formation of OH-CZX from CZX varied between liver microsomes (rat: 32.09?µM and 0.12?min?1; human: 27.19?µM and 0.14?min?1) and pure isozyme (3.18?µM and 0.29?min?1). The novel robust analytical method was capable of quantifying CZX, OH-CZX, and ABT simultaneously in a single run, and the method was used for both in vitro and in vivo studies. Pre-treatment of rats with ABT prior to oral and IV administration of CZX significantly decreased the clearance (threefold) and consequently increased the AUC of CZX (approx. three- to fourfold). When rats were pre-treated with ABT, the formation of OH-CZX was completely blocked after oral and IV administration; however, we were able to measure OH-CZX in rats administered with CZX by oral and IV routes without pre-treatment of ABT. The oral bioavailability of CZX was ~71% when dosed alone and reached 100% under pre-treatment with ABT. The t1/2 values of CZX was significantly prolonged for oral dosing compared with IV dosing under pre-treated conditions with ABT, suggesting an involvement of pre-systemic component in the disposition of CZX. The pharmacokinetic parameters of ABT did not change when it was dosed along with CZX (oral and IV), indicating that either CZX or OH-CZX had no effect on disposition of ABT. The plasma concentrations of ABT were above and beyond the required levels to inhibit CYP2E1 enzyme for at least 36?h post-treatment.  相似文献   

18.
1. Resveratrol, a polyphenolic compound present in grape and wine, has beneficial effects against cancer and protective effects on the cardiovascular system. It has been shown that the compound is sulphated in human liver and the aims of the present investigation were to study resveratrol glucuronidation in human liver microsomes and to determine whether flavonoids inhibit resveratrol glucuronidation. 2. A simple and reproducible radiometric assay for resveratrol glucuronidation was developed. The assay employed uridine-5′-diphosphoglucuronic acid-[14C] and unlabelled resveratrol. Resveratrol-glucuronide was isolated by TLC. The intra- and interassays variabilities were 1 and 1.5%, respectively. 3. The rate of resveratrol glucuronidation was measured in 10 liver samples. The mean ± SD and median of resveratrol glucuronidation rate were 0.69 ± 0.34 and 0.80 nmol/min/mg, respectively. Resveratrol glucuronosyl transferase followed Michaelis-Menten kinetics and the Km and Vmax (mean ± SD; n = 5) were 0.15 ± 0.09?mm and 1.3 ± 0.3 nmol/min/mg, respectively. The intrinsic clearance was 11 ± 4 × 10?3 ml/min.mg. 4. The flavonoid quercetin inhibited resveratrol glucuronidation and its IC50 (mean ± SD; n = 3) was 10 ± 1 μM. Myricetin, catechin, kaempferol, fisetin and apigenin (all at 20 μM) inhibited resveratrol glucuronidation and the percent of control ranged between 46% (catechin) to 72% (apigenin). 5. The present results show that resveratrol is glucuronated in the human liver. Glucuronidation may reduce the bioavailability of this compound however, flavonoids inhibit resveratrol glucuronidation and such an inhibition might improve the bioavailability of resveratrol.  相似文献   

19.
Abstract

  1. Radix Ophiopogonis is often an integral part of many traditional Chinese formulas, such as Shenmai injection used to treat cardio-cerebrovascular diseases. This study aimed to investigate the influence of the four active components of Radix Ophiopogonis on the transport activity of OATP1B1 and OATP1B3.

  2. The uptake of rosuvastatin in OATP1B1-HEK293T cells were stimulated by methylophiopogonanone A (MA) and ophiopogonin D′ (OPD′) with EC50 calculated to be 11.33?±?2.78 and 4.62?±?0.64?μM, respectively. However, there were no remarkable influences on rosuvastatin uptake in the presence of methylophiopogonanone B (MB) or ophiopogonin D (OPD). The uptake of atorvastatin in OATP1B1-HEK293T cells can be increased by MA, MB, OPD and OPD′ with EC50 calculated to be 6.00?±?1.60, 13.64?±?4.07, 10.41?±?1.28 and 3.68?±?0.85?μM, respectively.

  3. The uptake of rosuvastatin in OATP1B3-HEK293T cells was scarcely influenced by MA, MB and OPD, but was considerably increased by OPD′ with an EC50 of 14.95?±?1.62?μM. However, the uptake of telmisartan in OATP1B3-HEK293T cells was notably reduced by OPD′ with an IC50 of 4.44?±?1.10?μM, and barely affected by MA, MB and OPD.

  4. The four active components of Radix Ophiopogonis affect the transporting activitives of OATP1B1 and OATP1B3 in a substrate-dependent manner.

  相似文献   

20.
Abstract

1.?The purpose of this study was to investigate the inhibitory effects of diclofenac on human cytochrome P450 1A2-, 2C19- and 3A4-mediated drug oxidations and to evaluate the drug interaction potential of diclofenac and 4′-hydroxydiclofenac.

2.?Diclofenac was converted to 4′-hydroxydiclofenac by recombinantly expressed human P450 1A2 with Km and Vmax values of 33?µM and 0.20?min?1, respectively. Diclofenac and 4′-hydroxydiclofenac suppressed flurbiprofen 4′-hydroxylation by P450 2C9 strongly and moderately, respectively; however, they did not affect P450 2C19-dependent S-mephenytoin hydroxylation or P450 3A4-dependent midazolam hydroxylation.

3.?Although the caffeine 3-N-demethylation activity of liver microsomal P450 1A2 was inhibited by simultaneous incubation with diclofenac, the riluzole N-hydroxylation activities of recombinant P450 1A2 and human liver microsomes were inhibited after preincubation with diclofenac or 4′-hydroxydiclofenac for 20?min in the presence of NADPH. Using the inhibition constant (37?µM) of diclofenac on caffeine 3-N-demethylation and the reported 95th percentiles of maximum plasma concentration (10.5?µM) after an oral dose of diclofenac, the in vivo estimated increase in area under the plasma concentration–time curve was 29%.

4.?These results suggest that diclofenac could inhibit drug clearance to a clinically important degree that depends on P450 1A2. Clinically relevant drug interactions in vivo with diclofenac are likely to be invoked via human P450 1A2 function in addition to those caused by the effect of diclofenac on P450 2C9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号