首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Csanaky I  Gregus Z 《Toxicology》2003,186(1-2):33-50
Selenite (SeIV) and inorganic arsenicals counter the toxicity of each other. SeIV inhibits arsenic methylation in hepatocytes, however, it is unknown whether it decreases the formation of the highly toxic monomethylarsonous acid (MMAsIII). Therefore, we examined, in comparison with the methylation inhibitor periodate-oxidised adenosine (PAD), the effect of SeIV (10 micromol/kg, i.v.) on the appearance of arsenic metabolites in blood, bile and urine as well as the distribution of arsenic metabolites in the liver and kidneys in rats injected i.v. with 50 micromol/kg arsenite (AsIII) or arsenate (AsV). Arsenic metabolites were analysed by HPLC-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). In rats given either arsenical, PAD decreased the excretion and tissue concentrations of methylated arsenic metabolites (MMAsIII, monomethylarsonic acid [MMAsV], and dimethylarsinic acid [DMAsV]), while increasing the tissue retention of AsV and AsIII. The effect of SeIV on arsenic disposition differed significantly from that of PAD. For example, both in AsIII- and AsV-injected animals, SeIV lowered the tissue levels of MMAsIII and MMAsV, but increased the levels of DMAsV. SeIV almost abolished the biliary excretion of MMAsIII in AsV-exposed rats, but barely influenced it in AsIII-dosed rats. The SeIV-induced changes in arsenic disposition may largely be ascribable to formation of the known complex containing trivalent arsenic and selenide (SeII), which not only depends on but also influences the availability and effects of these metalloid species in tissues. By such complexation SeII compromises monomethylation of arsenic when trivalent arsenic availability is limited (e.g. in AsV-exposed rats), but affects it less when the presence of AsIII is overwhelming (e.g. in AsIII-dosed rats). As an auxiliary finding, it is shown that DMAsV occurs in the blood of rats not injected with arsenic and that DMAsV formation in rats can be followed by measuring the build-up of blood-borne DMAsV.  相似文献   

2.
In rats exposed to arsenite (AsIII) or arsenate (AsV), the biliary excretion of arsenic depends completely on availability of hepatic glutathione, suggesting that both AsIII and AsV are transported into bile in thiol-reactive trivalent forms (Gyurasics et al. [1991], Biochem. Pharmacol. 42, 465-468). To test this hypothesis, the bile and urine of bile duct-cannulated rats injected with AsIII or AsV (50 micromol/kg, iv) were collected periodically for 2 h and analyzed for arsenic metabolites by HPLC-hydride generation-atomic fluorescence spectrometry. Arsenic was excreted predominantly into bile in AsIII-injected rats, but the urine was the main route of excretion in AsV-exposed rats. Injected AsIII was excreted in urine practically unchanged, whereas both AsV and AsIII appeared in urine after administration of AsV. Irrespective of the arsenical administered, the bile contained 2 main arsenic species, namely AsIII and a hitherto unidentified metabolite. Formation of this metabolite could be prevented by pretreatment of the rats with the methylation inhibitor periodate-oxidized adenosine, indicating that it is a methylated arsenic compound. This metabolite could be converted in vitro into monomethylarsonic acid (MMAsV) by oxidation, whereas synthetic MMAsV could be converted into the unknown metabolite by reduction. Consequently, this biliary metabolite of both AsIII and AsV is monomethylarsonous acid (MMAsIII), a long-hypothesized, but never identified, intermediate in the biotransformation of AsIII and AsV. Although MMAsIII is thought to be formed from an oxidized precursor, rats injected with MMAsV did not excrete MMAsIII. In summary, the inorganic arsenicals investigated are transported into bile exclusively in trivalent forms, namely as AsIII and MMAsIII, but are excreted in urine in both tri- and pentavalent forms. Identification of MMAsIII is signified by the fact that this metabolite is more toxic than AsIII and AsV and thus formation of MMAsIII represents toxification of inorganic arsenic.  相似文献   

3.
Arsenate (AsV) is biotransformed into the more toxic arsenite (AsIII) and monomethylarsonous acid (MMAsIII), but it is unknown how to decrease production of these harmful metabolites. We investigated the effects of foscarnet and fosfomycin, drugs interacting with the phosphate transporter, on biotransformation of AsV, an analog of inorganic phosphate. The effects of entacapone, an inhibitor of catechol-O-methyl transferase (COMT), and nitrous oxide, an inactivator of methylcobalamin, were also tested on the formation of MMAsIII from AsIII in order to clarify the role of COMT and methylcobalamin in biomethylation of AsIII. Arsenic in bile and urine of control and treated rats receiving AsV or AsIII was speciated by HPLC-HG-AFS. In AsV-injected rats, foscarnet, but not fosfomycin, increased the urinary excretion of AsV and decreased the biliary and urinary excretion of AsIII as well as biliary excretion of MMAsIII. In AsIII-injected rats, however, foscarnet failed to influence the excretion of AsIII and its metabolites, suggesting that this drug inhibits the hepatic uptake and renal reabsorption of AsV, thereby decreasing formation of AsIII and MMAsIII from AsV. Entacapone or nitrous oxide pretreatment slightly or not at all influenced the biliary excretion of MMAsIII and urinary excretion of dimethylarsinic acid (DMAsV) in AsIII-injected rats. In contrast, periodate-oxidized adenosine, an inhibitor of S-adenosylmethionine-dependent methyltransferases, nearly abolished appearance of methylated arsenic metabolites in bile and urine. Thus, foscarnet facilitates urinary clearance of AsV and decreases formation of toxic AsIII and MMAsIII, indicating that this drug may be used to promote elimination and counter toxification of AsV. Because entacapone and nitrous oxide influenced the excretion of MMAsIII and DMAsV negligibly, neither COMT nor methylcobalamin appears to be involved in arsenic methylation in rats.  相似文献   

4.
Arsenicals are known to be toxic and carcinogenic in humans. Inorganic arsenicals are enzymatically methylated to monomethylarsonic acid (MMAsV) and dimethylarsinic acid (DMAsV), which are the major pentavalent methyl arsenic metabolites. Recent reports indicate that trivalent methyl arsenicals are produced through methylation of inorganic arsenicals and participate in arsenic poisoning. Trivalent methyl arsenicals may be generated as arsenical-glutathione conjugates, such as monomethylarsonous diglutathione (MMAsIIIDG) and dimethylarsinous glutathione (DMAsIIIG), during the methylation process. It has been well known that reduced glutathione (GSH) reduces MMAsV and DMAsV in vitro, and produces MMAsIIIDG and DMAsIIIG. Some studies have shown that exogenous GSH increased cytolethality of MMAsV and DMAsV in vitro, while other studies have suggested that exogenous GSH decreased them. In this study, we examined the true effects of exogenous GSH on the cytolethality of MMAsV and DMAsV by investigating reactions between various concentrations of MMAsV or DMAsV and GSH. GSH significantly increased the cytolethality and cellular uptake of pentavalent methyl arsenicals when GSH over 25 mM was pre-incubated with mM levels of arsenicals, and this cytolethality might have been caused by arsenical-GSH conjugate generation. However, GSH at less than 25 mM did not affect the cytolethality and cellular uptake of pentavalent methyl arsenicals. These findings suggest that high concentrations of arsenicals and GSH are needed to form arsenical-GSH conjugates and to show significant cytolethality. Furthermore, we speculated that MMAsIIIDG and DMAsIIIG may separate into trivalent methyl arsenicals and glutathione, which are then transported into cells where they show significant cytolethality.  相似文献   

5.
Csanaky I  Németi B  Gregus Z 《Toxicology》2003,183(1-3):77-91
Arsenite (AsIII) is eliminated via excretion and methylation. Monomethylarsonous acid (MMAsIII) is a super toxic metabolite of AsIII, while dimethylarsinic acid produced in the next metabolic step is relatively atoxic. Since the role of methylation in the acute toxicity and elimination of AsIII in vivo is unclear, we have examined the excretion and tissue retention of AsIII and its metabolites in rats exposed to increasing AsIII doses. Rats were injected i.v. with 20, 50 and 125 micromol/kg AsIII and arsenic metabolites in bile, urine and tissues were analysed. The excretion of AsIII increased almost proportionately to the dose, while its concentration in tissues rose more than proportionately. In contrast, the excretion and tissue concentrations of methylated metabolites increased less than the dosage, or they even decreased after injection of the largest dose of AsIII. To elucidate the mechanism of the dose-dependent decrease of methylation, we quantified S-adenosylmethionine (SAME), glutathione (GSH), and adenine nucleotides in the liver of AsIII-injected rats. AsIII decreased the hepatic concentrations of GSH and adenosine 5'-triphosphate (ATP) and the energy charge in a dose-dependent manner, but increased the level of SAME. Thus, impaired methylation after AsIII overdose is not due to SAME shortage, but probably to methyltransferase inhibition. It appears that exhausted elimination capacity of AsIII, rather than MMAsIII produced from AsIII, contributes significantly to the acute toxicity of AsIII. After GSH depletion the retained AsIII can increasingly inhibit SH-enzymes, thus causing ATP depletion and energetic disorder.  相似文献   

6.
After administration of the inorganic sodium arsenite or arsenate to rats, the biliary excretion of arsenic is rapid, is accompanied by the biliary output of large amounts of GSH, and is completely arrested by the GSH depletor diethyl maleate (DEM). We studied the biliary excretion of trimelarsan (TMA) and melarsoprol (MAP) in rats in order to determine whether biliary excretion is also significant in the disposition of these trivalent organic arsenicals that are used as therapeutic agents and whether GSH is also involved in their hepatobiliary transport. After injection of either drug (100 micromol/kg, i.v.), arsenic was rapidly excreted in bile (up to 1 micromol/kg. min, approximately 55% of dose/100 min). Concurrently, TMA and MAP increased the biliary output of GSH 3- and 6 fold, and lowered the hepatic GSH content by 24% and 27%, respectively. In TMA-injected rats, pretreatment with DEM or buthionine sulfoximine decreased the initial biliary excretion of arsenic by 75% and 40%, respectively, whereas in MAP-injected rats these GSH depletors diminished arsenic output by 45% and 20%. Both arsenicals reacted with GSH in vitro, giving rise to the same product, which was also shown by HPLC analysis to be a major biliary metabolite of both TMA and MAP. This metabolite was sensitive to gamma-glutamyltranspeptidase in vitro and its biliary excretion was virtually prevented by the GSH depletors, confirming that it is a GSH conjugate (purportedly melarsen-diglutathione). Some TMA was excreted in the bile unchanged, whereas a significant amount of MAP also appeared there as two glucuronides. The biliary excretion of unchanged TMA and MAP glucuronides was increased by experimental depletion of GSH. These studies indicate that the biliary excretion of TMA and MAP (1) is very significant in their disposition, (2) is partially dependent on the hepatic availability of GSH, as these arsenicals are excreted in part as a GSH conjugate, and (3) is concomitant with the increased appearance of GSH in bile, probably originating from dissociation of the unstable GSH conjugate of these arsenicals. Thus, conjugation with GSH is important in the elimination of both TMA and MAP, although glucuronidation is also involved in the fate of MAP.  相似文献   

7.
Reduction of the pentavalent arsenate (AsV) to the thiol-reactive arsenite (AsIII) toxifies this environmentally prevalent form of arsenic, yet its biochemical mechanism in mammals is incompletely understood. Purine nucleoside phosphorylase (PNP) has been shown recently to function as an AsV reductase in vitro, provided its substrate (inosine or guanosine) and an appropriate dithiol (e.g., dithiothreitol, DTT) were present. It was of interest to know if this ubiquitous enzyme played a significant role in reduction of AsV to AsIII in vivo. Two approaches were used to test this. First, it was determined if compounds that influenced AsV reduction by purified PNP (i.e., nucleosides, thiols, and PNP inhibitors) would similarly affect reduction of AsV by human erythrocytes. Erythrocytes were incubated with AsV, and the formed AsIII was quantified by HPLC-hydride generation-atomic fluorescence spectrometry. The red blood cells reduced AsV at a considerable rate, which could be enhanced by inosine or inosine plus DTT. These stimulated AsIII formation rates were PNP-dependent, as PNP inhibitors strongly inhibited them. In contrast, PNP inhibitors had little if any inhibitory effect on AsIII formation in the absence of exogenous inosine, indicating that this basal rate of AsV reduction is PNP-independent. Second, the role of PNP in reduction of AsV in vivo was also assessed by investigating the effect of the PNP inhibitor BCX-1777 on the biotransformation of AsV in control and DTT-treated rats with cannulated bile duct and ligated renal pedicles. Although it abolished hepatic PNP activity, BCX-1777 influenced neither the biliary excretion of AsIII and monomethylarsonous acid, nor the tissue concentration of AsV and its metabolites in either group of AsV-injected rats. Thus, despite its in vitro activity, PNP does not appear to play a significant role in AsV reduction in human erythrocytes and in rats in vivo. Further research should clarify the in vivo relevant mechanisms of AsV reduction in mammals.  相似文献   

8.
The environmentally prevalent arsenate (AsV) is reduced in the body to the much more toxic arsenite (AsIII). Recently, we have demonstrated that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the reduction of AsV in the presence of glutathione, yet the role of GAPDH in AsV reduction in vivo is unknown. Therefore, we examined the effect of (S)-alpha-cholorhydrin (ACH), which forms a GAPDH-inhibitory metabolite, on the reduction of AsV in rats. These studies confirmed the in vitro role of GAPDH as an AsV reductase, inasmuch as 3 h after administration of ACH (100 or 200 mg/kg, ip) to rats both the cytosolic GAPDH activity and the AsV-reducing activity dramatically fell in the liver, moderately decreased in the kidneys, and remained unchanged in the muscle. Moreover, the AsV-reducing activity closely correlated with the GAPDH activity in the hepatic cytosols of control and ACH-treated rats. Two confounding effects of ACH (i.e., a slight fall in hepatic glutathione levels and a rise in urinary AsV excretion) prompted us to examine its influence on the disposition of injected AsV (50 micromol/kg, iv) in rats with ligated bile duct as well as in rats with ligated bile duct and renal pedicles. These experiments demonstrated that the hepatic retention of AsV significantly increased, and the combined levels of AsV metabolites (i.e., AsIII plus methylated arsenicals) in the liver decreased in response to ACH; however, ACH failed to delay the disappearance of AsV from the blood of rats with blocked excretory routes. Thus, the GAPDH inactivator ACH inhibits AsV reduction by the liver, but not by the whole body, probably because the impaired hepatic reduction is compensated for by hepatic and extrahepatic AsV-reducing mechanisms spared by ACH. It is most likely that ACH inhibits hepatic AsV reduction predominantly by inactivating GAPDH in the liver; however, a slight ACH-induced glutathione depletion may also contribute. While this study seems to support the conclusion that GAPDH in the liver is involved in AsV reduction in rats, confirmation of the in vivo role of GAPDH as an AsV reductase is desirable.  相似文献   

9.
The relationship of exposure and tissue concentration of parent chemical and metabolites over prolonged exposure is a critical issue for chronic toxicities mediated by metabolite(s) rather than parent chemical alone. This is an issue for AsV because its trivalent metabolites have unique toxicities and relatively greater potency compared to their pentavalent counterparts for many endpoints. In this study, dose-dependency in tissue distribution and urinary excretion for inorganic arsenic and its methylated metabolites was assessed in female C57Bl/6 mice exposed to 0, 0.5, 2, 10 or 50 ppm arsenic (as arsenate, AsV) in their drinking water for 12 weeks. No adverse effects were observed and body weight gain did not differ significantly among groups. Urinary excretion of arsenite monomethylarsonous acid (MMA(III)), dimethylarsinous acid (DMA(III)), dimethylarsinic acid (DMAV), and trimethylarsine oxide (TMAO) increased linearly with dose, whereas AsV and monomethylarsonic acid (MMAV) excretion was non-linear with respect to dose. Total tissue arsenic accumulation was greatest in kidney > lung > urinary bladder > skin > blood > liver. Monomethyl arsenic (MMA, i.e. MMA(III)+MMAV) was the predominant metabolite in kidney, whereas dimethylarsenic (DMA, i.e., DMA(III)+DMAV) was the predominant metabolite in lung. Urinary bladder tissue had roughly equivalent levels of inorganic arsenic and dimethylarsenic, as did skin. These data indicate that pharmacokinetic models for arsenic metabolism and disposition need to include mechanisms for organ-specific accumulation of some arsenicals and that urinary metabolite profiles are not necessarily reflective of target tissue dosimetry.  相似文献   

10.
Role of metabolism in arsenic toxicity   总被引:6,自引:0,他引:6  
In humans, as in most mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by alternating reduction of pentavalent arsenic to trivalent and addition of a methyl group from S-adenosylmethionine. The methylation of inorganic arsenic may be considered a detoxification mechanism, as the end metabolites, MMA and DMA, are less reactive with tissue constituents, less toxic, and more readily excreted in the urine than is inorganic arsenic, especially the trivalent form (AsIII, arsenite). The latter is highly reactive with tissue components, due to its strong affinity for sulfhydryl groups. Thus, following exposure to AsV the first step in the biotransformation, i.e. the reduction to AsIII, may be considered a bioactivation. Also, reactive intermediate metabolites of high toxicity, mainly MMAIII, may be formed and distributed to tissues. Low levels of MMAIII and DMAIII have been detected in urine of individuals chronically exposed to inorganic arsenic via drinking water. However, the contribution of MMAIIIand DMAIII to the toxicity observed after intake of inorganic arsenic by humans remains to be elucidated. The major route of excretion of arsenic is via the kidneys. Evaluation of the methylation of arsenic is mainly based on the relative amounts of the different metabolites in urine. On average human urine contains 10-30% inorganic arsenic, 10-20% MMA and 60-80% DMA.  相似文献   

11.
Taking advantage of mice deficient in gamma-glutamyl transpeptidase that are unable to metabolize glutathione (GSH), we have identified two previously unrecognized urinary metabolites of arsenite: arsenic triglutathione and methylarsenic diglutathione. Following administration of sodium arsenite to these mice, approximately 60-70% of urinary arsenic is present as one of these GSH conjugates. We did not detect the dimethyl derivative, dimethyl arsenic GSH; however, dimethyl arsenic (DMAV) represented approximately 30% of urinary arsenic. Administration of buthionine sulfoximine, an inhibitor of GSH synthesis, to wild-type mice reduced urinary arsenic excretion by more than 50%, indicating the GSH dependence of arsenic metabolism, transport, or both. Rodents deficient in three known ABC family transporters (MRP1, MRP2, and MDR1a/1b) exhibited urinary arsenic levels similar or greater than those in wild-type rodents; however, administration of MK571, an MRP inhibitor, reduced urinary arsenic excretion by almost 50%. MK571-treated mice showed approximately 50% reduction of AsIII, MMAV, and AsV as compared to untreated wild-type controls, while DMAV levels were unchanged. These findings suggest that arsenic excretion is in part dependent on GSH and on an MRP transporter other than MRP1 or 2.  相似文献   

12.
The interrelationship between the biliary excretion of exogenous group Va-metalloids (arsenic, antimony and bismuth) and selenium, as well as endogenous glutathione has been studied in rats injected intravenously with sodium selenite and one of the group Va-metalloids. Arsenic, antimony and bismuth appeared in the bile of rats together with large amounts of non-protein thiols (NPSH, representing glutathione and its SH-containing degradation products) and, with the exception of bismuth, they caused choleresis. Significant interactions were observed in the hepatobiliary disposition between selenium and each of the group Va-metalloids, however, their outcomes were not uniform. When coadministered with sodium arsenite or arsenate, selenite enhanced the initial biliary excretion of arsenic 2- and 8-fold, respectively, without further increasing the concomitant excretion of NPSH or the choleretic effect of arsenicals. However, selenite augmented neither the excretion of antimony or bismuth, nor the simultaneous biliary release of NPSH. In turn, arsenite, arsenate and antimony potassium tartrate increased the initial biliary excretion of selenium more than 10-fold and enhanced the accumulation of selenium in blood (exclusively in the erythrocytes). In contrast, administration of bismuth ammonium citrate diminished both the biliary excretion and the erythrocytic accumulation of selenium, while causing retention of selenium in the blood plasma. In rats receiving arsenic or antimony with selenite, the time courses of the biliary excretion of these group Va-metalloids, selenium and NPSH were similar. It is hypothesised that incorporation of selenol metabolites of selenite into the glutathione complexes of arsenic and antimony, resulting in cholephilic ternary complexes, accounts for the arsenic- and antimony-induced augmentation of the hepatobiliary transport of selenium. However, additional chemical and/or dispositional mechanisms are thought to be responsible for the selenite-induced increase in biliary excretion of arsenic.  相似文献   

13.
Having found that the electrophilic model compound sulfobromophthalein markedly altered the fate of exogenous selenium in the body by reacting in vivo with nucleophilic selenium metabolites, the effects of metal-containing drugs with expected selenium reactivity were tested on biliary, urinary, and pulmonary excretion. Tissue distribution of selenium in selenite-injected rats was also examined. Coadministration with [(75)Se]selenite (10 micromol/kg, iv) of the trypanosomicid arsenicals (100 micromol/kg, iv) trimelarsan (TMA) or melarsoprol (MAP), the antitumor cisplatin (25 micromol/kg, iv), or the antirheumatic gold sodium thiomalate (25 or 50 micromol/kg, iv) significantly altered the disposition of (75)Se, whereas carboplatin (100 micromol/kg, iv) did not produce such an effect. The most dramatic alterations included the approximately 20-fold increase in the biliary excretion rate of selenium in response to TMA and MAP, the almost complete cessation of the exhalation of selenium as dimethyl selenide after administration of the arsenic- and gold-containing drugs, and the manifold accumulation of selenium in the blood plasma following gold injection. Direct chemical reaction of the drugs with nucleophilic selenite metabolites in the body may underlie these alterations. The tight coordination in time and extent observed between the biliary excretion of arsenic and selenium in rats receiving either of the arsenicals and selenite supports this hypothesis. However, attempts to detect selenium-containing biliary metabolites of TMA and MAP have failed, possibly owing to their instability. In summary, the arsenic-, platinum- and gold-containing drugs significantly influence the fate of exogenous selenium, whereby they may adversely affect the availability of this essential element for synthesis of selenoenzymes. Furthermore, the capability of TMA and MAP to enhance the biliary and total excretion of selenium renders these drugs significant candidates for antidotes in selenium intoxication.  相似文献   

14.
Inorganic arsenic methylation by rat tissue slices   总被引:3,自引:0,他引:3  
Rat liver, kidney and lung slices methylate trivalent inorganic arsenic (AsIII) to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA); the liver has the greatest methylating capacity. AsIII enters the liver cells by a diffusion process followed by extensive binding to intracellular components which favors its extensive accumulation inside the cells. Reduced glutathione regulates AsIII metabolism through several mechanisms: facilitation of AsIII diffusion into the cells, stimulation of the first methylation reaction and increase of DMA excretion by the cells. An excess of AsIII inhibits DMA production by liver cells but this inhibition is reversible; mercuric ions inhibit both MMA and DMA production probably by decreasing inorganic arsenic (Asi) uptake and the second methylation reaction. DMA can be produced from MMA by rat liver slices and this methylation step is stimulated by GSH. In contrast to AsIII, AsV is not extensively taken up by the hepatocyte and is thus poorly methylated.  相似文献   

15.
Exposure to 4,4'-diaminodiphenylmethane (DAPM) has been linked to jaundice, toxic hepatitis, cholangitis, and cholestasis. In rodents, DAPM initially injures biliary epithelial cells, and toxicity is greater in female than male rats. Our goal was to determine if gender differences in DAPM toxicity were due to differences in biliary excretion or covalent binding of DAPM metabolites in the liver. Bile duct-cannulated female and male Sprague-Dawley rats were gavaged with vehicle or with 25 or 50 mg [14C]DAPM/kg, and bile was collected for 6 h. Serum and bile indicators of hepatobiliary toxicity were assessed, and radioactivity was measured in bile, serum, urine, and liver. At the 25 mg/kg dose, serum parameters were elevated only in female rats, while increases in serum parameters were observed in both genders at the 50 mg/kg dose. In males rats, biliary constituents altered by DAPM [inorganic phosphate (Pi), glucose, gamma-glutamyl transpeptidase (GGT)] showed time- and dose-dependent responses. In female rats, however, biliary constituents showed either minimal dose-response effects (glucose), were increased equivalently at both doses (Pi), or were not altered by DAPM treatment (GGT). At the 50 mg/kg dose, liver alkaline phosphatase decreased in female but not male rats. Gender also affected the disposition of DAPM metabolites. At 25 mg DAPM/ kg, male rats had greater amounts of DAPM/metabolite in bile and liver, while females had greater amounts in serum and urine. These studies thus confirm that (1) DAPM is more toxic in female than male rats, and (2) gender has a significant effect on the disposition and biliary excretion of DAPM metabolites.  相似文献   

16.
Sodium arsenite (25-100 mumol/kg, i.v.) and arsenate (75-300 mumol/kg, i.v.) injected into anaesthetized rats increased the biliary excretion of endogenous non-protein thiols (NPSH) in a dose-dependent fashion up to 24- and 31-fold, respectively. Simultaneously with NPSH, glutathione (GS) excretion was increased to a similar extent suggesting that the increment in biliary thiol output originated from enhanced hepatobiliary transport of GS. After administration of labelled arsenicals, biliary excretion of 74As and NPSH followed similar time-courses. Biliary excretion of 74As was more efficient after arsenite than arsenate administration corresponding to the greater potency of arsenite compared to arsenate to increase biliary output of NPSH. Coadministered sulfobromophthalein (BSP) inhibited the biliary excretion of 74As and prevented the arsenical-induced increase in biliary NPSH. Thus, hepatobiliary transport of arsenic apparently proceeds coordinately with that of GS. However, excretion of each molecule of arsenic compound generates transport of several molecules of GS. Though mercuric, methylmercuric, cadmium and zinc ions are thought to be excreted into bile as complexes with GS, the marked arsenical-induced increase in GS excretion only doubled the biliary excretion of inorganic mercury and hardly influenced the transport of other metals into bile. This finding suggests that arsenicals markedly enhance biliary excretion of GS with a free thiol group but barely or not at all that of GS with a thiol group blocked by a firmly bound metal ion. Both arsenicals diminished the biliary excretion of BSP-glutathione conjugate after BSP administration presumably because they impaired conjugation of BSP with GSH due to decreased GS availability. It is assumed that arsenite, and arsenate after reduction to arsenite, forms an unstable complex with GS that is efficiently transported into bile resulting in increased biliary output of GS. It is demonstrated that arsenite-induced perturbation of hepatobiliary disposition of endogenous GS differentially affects biliary excretion of xenobiotics with GS-dependent hepatobiliary transport.  相似文献   

17.
Chronic exposure of humans to inorganic arsenic, mainly pentavalent arsenate (iAsV), results in drinking water-induced oxidative stress (Pi et al., 2002). Thioredoxin reductase (TR) and glutathione reductase (GR) are the two critical enzymes in the response to oxidative stress in vivo. In the present study we examined alterations in enzyme activities of hepatic TR and GR from prolonged exposure of male New Zealand white rabbits to iAsV. Exposure of rabbits to iAsV in drinking water (5 mg/L) for 18 weeks caused a significant suppression of hepatic TR and GR activities, of approximately 30% and 20%, respectively, below controls. In vitro experiments suggested that trivalent inorganic arsenic (iAsIII) but not pentavalent arsenicals including iAsV, monomethylarsonic acid (MMAsV), and dimethylarsinic acid (DMAsV) affected the hepatic TR activity of rabbit. So it was suggested that in the present study iAsV ingested via drinking water was metabolized to reactive trivalent arsenicals, such as iAsIII, which may play an important role in the decreased TR and GR activities from prolonged exposure to iAsV observed in vivo.  相似文献   

18.
Reduction of arsenate (AsV) to the more toxic arsenite (AsIII) is toxicologically important, yet its mechanism is unknown. To clarify this, AsV reduction was investigated in human red blood cells (RBC), as they possess a simple metabolism. RBC were incubated with AsV in gluconate buffer, and the formed AsIII was quantified by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). The observations are compatible with the following conclusions. (1) Human RBC reduce AsV intracellularly, because 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, inhibitor of the chloride-bicarbonate exchanger, which also mediates phosphate and AsV uptake), as well as chloride and phosphate, countered AsIII formation. (2) Purine nucleoside phosphorylase (PNP), whose AsV reductase activity has been directly demonstrated, cannot be a physiologically relevant AsV reductase, because its inhibitor (BCX-1777) failed to decrease the basal erythrocytic AsV reduction, although it prevented the increase in AsIII formation caused by artificial activation of PNP with inosine and dithiothreitol. (3) The basal (PNP-independent) AsV reduction requires glutathione (GSH), because the GSH depletor diethylmaleate strongly diminished AsIII formation. (4) The erythrocytic AsV reduction apparently depends on NAD(P) supply, because oxidants of NAD(P)H (i.e., pyruvate, ferricyanide, methylene blue, nitrite, tert-butylhydroperoxide, dehydroascorbate, 4-dimethylaminophenol) enhanced AsIII formation from AsV. The oxidant-stimulated AsV reduction is PNP-independent, because BCX-1777 failed to affect it, but is GSH-dependent, because diethylmaleate impaired it. (5) Pyruvate-induced glucose depletion, which causes NAD enrichment in the erythrocytes at the expense of NADH, enhanced AsV reduction. This suggests that the erythrocytic AsV reduction requires both NAD supply and operation of the lower part of the glycolytic pathway starting from glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that, unlike the upper part, remains fed with substrates originating from the degradation of 2,3-bisphosphoglycerate in RBC depleted of glucose by pyruvate. (6) Fluoride, which arrests glycolysis at enolase and thus prevents NAD formation, inhibited AsV reduction in glucose-sufficient RBC, but increased it in glucose-deficient (NAD-enriched) cells, suggesting that the section of glycolysis coupled to AsV reduction lies between GAPDH and enolase. In conclusion, besides the artificial PNP-dependent AsV reduction, human RBC contain a PNP-independent AsV-reducing mechanism. This appears to require the supply of GSH, NAD, and substrate to one or more of the glycolytic enzymes localized between GAPDH and enolase.  相似文献   

19.
The involvement of glutathione (GSH) in the biliary excretion of Cu was investigated in bile-cannulated inbred WAG/Rij and BN rats, pretreated with diethylmaleate (DEM), phorone or buthionine sulfoximine (BSO) and injected with Cu doses of 10 or 30 micrograms/100 g body wt. DEM reduced liver GSH to 27-56% and biliary GSH excretion to 18-38%; phorone reduced GSH in the liver to 55% and increased it in the bile (113%) followed by a slight decrease (79%); BSO reduced liver GSH to 50% and bile GSH to 20%. After injection of Cu to control rats a profile of biliary Cu excretion was found, composed of a slowly (SCuE) and a rapidly (RCuE) disappearing component, the latter only present after the dose of 30 micrograms Cu. DEM had no effect on SCuE after a 10 micrograms dose and a temporary effect on SCuE after a 30 micrograms dose in both WAG/Rij and BN rats. Phorone reduced SCuE after both Cu doses to 50%. Both agents abolished RCuE and reduced endogenous biliary Cu excretion to less than 50%. Release of injected Cu from plasma and uptake by the liver was inhibited by DEM and phorone in both rat strains; in BN rats basal plasma Cu level of DEM-treated rats was increased as well. BSO reduced SCuE after both Cu doses but had no influence on RCuE. Endogenous Cu excretion was reduced by BSO in BN rats but not in WAG/Rij rats. The results show that biliary Cu excretion proceeds by a pattern, the components of which can be affected differently by the various drugs. They also indicate that GSH is not directly involved in biliary Cu excretion but suggest that it may play a role in the metabolism of Cu in the liver.  相似文献   

20.
The involvement of the canalicular multidrug resistance protein 2 (Mrp2) in the hepatobiliary excretion of acetaminophen (APAP)-glutathione (GSH) conjugate and its derivatives was investigated using transport-deficient (TR- rats. Although no differences in the biliary concentration of APAP itself were detected between normal Wistar and TR- rats, significant differences in the biliary disposition of several conjugated metabolites of APAP were detected. APAP-GSH was virtually absent in bile from TR- rats. Also, biliary concentrations of APAP-mercapturate (NAC; N-acetylated l-cysteine) and APAP-GLU were significantly reduced in TR- rats. No differences in the biliary concentration of APAP-cysteinylglycine/cysteine (CG/CYS) were detected between normal and mutant rats. The cumulative amounts of APAP-CG/CYS and APAP-NAC excreted in urine of mutant rats were decreased, whereas APAP-GLU was markedly increased. Analysis of liver samples revealed that APAP-GSH and APAP-NAC accumulate in mutant rat livers. Our results support the direct involvement of Mrp2 in the hepatobiliary excretion of several conjugated metabolites of APAP, including APAP-GSH and APAP-NAC, and provide relevant information on processes that may be involved with both their hepatic basolateral transport and renal elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号