首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of solid-state plasticizers for the hot-melt extrusion of pharmaceutical dosage forms has been shown to be beneficial compared with liquid plasticizers. The purpose of this study was to determine the suitability of citric acid (CA) as a solid plasticizer for the preparation of Eudragit RS PO extended-release matrix systems by a melt extrusion technique. The influence of increasing levels of CA monohydrate (CA MH) or anhydrous CA in the powder blend on the extrusion process parameters (screw speed and motor load) was determined as a function of temperature. The solubility of CA MH in extruded tablets was studied by means of modulated differential scanning calorimetry (MDSC) and powder X-ray diffraction (PXRD). Films were cast from organic solutions to demonstrate the plasticizing effect of CA MH as a change in physico-mechanical properties (tensile strength, elastic modulus and elongation). The CA release from extruded tablets was studied over 12 h. The monohydrate form was found to distinctly facilitate the extrusion of Eudragit RS PO, whereas the addition of anhydrous CA to the polymer powder was less effective. This divergent behaviour in plasticization of Eudragit RS PO was attributed to the higher solubility of the monohydrate in the acrylic polymer. The plasticizing effect of the CA MH reached a plateau at 25% during hot-melt extrusion, which coincided with the solubility limit of the organic acid in the polymer as shown by MDSC and PXRD results. The CA MH increased the flexibility of Eudragit RS PO films, as demonstrated by a decrease in tensile strength and elastic modulus and an increase in elongation as a function of CA MH concentration. The dissolution of CA from the matrix tablets followed an extended-release profile, with CA MH exhibiting a faster dissolution rate than the anhydrous form. In conclusion, CA MH was found to be an effective plasticizer for Eudragit RS PO that facilitates the production of controlled-release matrix systems by hot-melt extrusion.  相似文献   

2.
In the current study, the influence of plasticizer level on drug release was investigated for solid dosage forms prepared by hot-melt extrusion and film coating. The properties of two highly water-soluble compounds, diltiazem hydrochloride (DTZ) and chlorpheniramine maleate (CPM), and a poorly water-soluble drug, indomethacin (IDM), were investigated in the melt extrudates containing either Eudragit RSPO or Eudragit RD 100 and triethyl citrate (TEC) as the plasticizer. In addition, pellets containing DTZ were film coated with Eudragit RS 30D and varying levels of TEC using a fluidized bed coating unit. Differential scanning calorimetry (DSC) demonstrated that both CPM and IDM exhibited a plasticization effect on the acrylic polymers, whereas no plasticizing effect by DTZ on Eudragit RSPO was observed. Thermogravimetric analysis (TGA) was used to investigate the thermal stability of the DTZ, Eudragit RSPO and TEC at 140 degrees C, the maximum temperature used in the hot-melt extrusion process. The chemical stability of DTZ and IDM in the extrudate following hot-melt processing was determined by high pressure liquid chromatography (HPLC). Drug release rates of both DTZ and CPM from hot-melt extrudates increased with an increase in the TEC level in the formulations, while the release rate of DTZ from the Eudragit RS 30D-coated pellets decreased with an increase in TEC in the coating dispersion. This phenomenon was due to the formation of a reservoir polymeric structure as a result of the thermal stress and shear stress involved in the hot-melt extrusion process regardless of the TEC level. In contrast, coalescence of the polymer particles in the film coating process was enhanced with higher levels of TEC, as demonstrated by scanning electron microscopy (SEM). The addition of TEC (0% to 8%) in the IDM hot-melt extrudate formulation had no influence on the drug release rate as the drug release rate was controlled by drug diffusion through the inside of the polymeric materials rather than between the polymer particles.  相似文献   

3.
The purpose of this investigation was to determine the effects of thermal processing and post-processing thermal treatment on the release properties of chlorpheniramine maleate (CPM) from matrix tablets containing Eudragit RS PO and triethyl citrate (TEC). CPM tablets containing Eudragit RS PO with and without TEC were prepared by direct compression (DC), high shear hot-melt granulation (HMG), and hot-melt extrusion (HME). X-ray diffraction patterns showed that the CPM was distributed in Eudragit RS PO at the molecular level following HME. The thermogravimetry analysis (TGA) profiles of CPM, Eudragit RS PO, and TEC demonstrated that these materials were thermally stable during both the high shear HMG and HME processes. The tablets were subjected to post-processing thermal treatment by storing the tablets at 60 degrees C in open containers for 24 hr. Tablets prepared by DC showed the highest drug release rate constant of 36.2% hr-1/2. When 4% TEC was incorporated into the formulation, the drug release rate constant for the directly compressed tablets decreased to 32.4% hr-1/2. After high shear HMG and HME of the powder blend containing 4% TEC, the drug release rate constant decreased to 30.8 and 13.8% hr-1/2 for the respective processes. The drug release rate constants for all tablets decreased following post-processing thermal treatment. The reduction in release rate was due to an increase in the intermolecular binding and entanglement between drug molecules and polymer molecules that occurred during thermal processing. Post-processing thermal treatment of the hot-melt extrudates had a minimal effect on the drug release rate since the HME process enhanced the drug and polymer entanglement to a greater extent.  相似文献   

4.
The objective of this study was to investigate the properties of tablets containing granulations of ibuprofen (Ibu) and Ammonio Methacrylate Copolymer, Type B (Eudragit RS PO) prepared by hot-melt processing. Tablets were compressed from granules prepared by hot-melt granulation (HMG) or direct compression (DC). For the hot-melt extrusion (HME) process, tablets were prepared by cutting the extrudate, manually. The physicochemical properties of tablets were investigated using thermal analysis, powder X-ray diffraction analysis, tablet hardness, and drug dissolution. The effect of thermal treatment of tablets on the dissolution characteristics of Ibu was also investigated. The results demonstrated that the Ibu lowered the glass transition temperature (Tg) of the Eudragit RS PO and the softened polymer functioned as a thermal binder in the granulation. Ibu was demonstrated to be an effective plasticizer for Eudragit RS PO in the thermal processes. The efficiency of the granulation process increased with increasing levels of Eudragit RS PO in the powder blend. Higher levels of Eudragit RS PO in the tablets prepared by HMG or HME resulted in a decrease in the dissolution rate of the Ibu. An increase in the amount of Ibu in the tablets prepared by HMG or DC led to a decrease in the initial dissolution rate of the Ibu. Following the thermal treatment of the Ibu tablets prepared by HMG, the dissolution rate was significantly decreased due to structural changes in the tablets that resulted from the fusion and coalescence of plasticized polymer particles, causing a reduction in tablet porosity. The Ibu tablets prepared by HME demonstrated minimal changes in their release properties following thermal treatment even at temperatures higher than the Tg of the polymer. HME was shown to be a novel method to prepare matrix tablets and stable dissolution properties were obtained when tablets were stored at 40 degrees C for 30 days.  相似文献   

5.
The objective of this study was to investigate the properties of tablets containing granulations of ibuprofen (Ibu) and Ammonio Methacrylate Copolymer, Type B (Eudragit RS PO) prepared by hot-melt processing. Tablets were compressed from granules prepared by hot-melt granulation (HMG) or direct compression (DC). For the hot-melt extrusion (HME) process, tablets were prepared by cutting the extrudate, manually. The physicochemical properties of tablets were investigated using thermal analysis, powder X-ray diffraction analysis, tablet hardness, and drug dissolution. The effect of thermal treatment of tablets on the dissolution characteristics of Ibu was also investigated. The results demonstrated that the Ibu lowered the glass transition temperature (Tg) of the Eudragit RS PO and the softened polymer functioned as a thermal binder in the granulation. Ibu was demonstrated to be an effective plasticizer for Eudragit RS PO in the thermal processes. The efficiency of the granulation process increased with increasing levels of Eudragit RS PO in the powder blend. Higher levels of Eudragit RS PO in the tablets prepared by HMG or HME resulted in a decrease in the dissolution rate of the Ibu. An increase in the amount of Ibu in the tablets prepared by HMG or DC led to a decrease in the initial dissolution rate of the Ibu. Following the thermal treatment of the Ibu tablets prepared by HMG, the dissolution rate was significantly decreased due to structural changes in the tablets that resulted from the fusion and coalescence of plasticized polymer particles, causing a reduction in tablet porosity. The Ibu tablets prepared by HME demonstrated minimal changes in their release properties following thermal treatment even at temperatures higher than the Tg of the polymer. HME was shown to be a novel method to prepare matrix tablets and stable dissolution properties were obtained when tablets were stored at 40°C for 30 days.  相似文献   

6.
The influence of in situ plasticization of chlorpheniramine maleate (CPM) on Eudragit RS PO from hot-melt extruded matrix tablets, and from compressed granules prepared by thermal processing was investigated. CPM was studied as both a model drug substance and as a solid-state plasticizer for the acrylic polymer. Triethyl citrate (TEC) was incorporated into the polymer blend as a liquid plasticizer for the polymer. The influence of TEC and CPM concentration on the dissolution properties of CPM tablets was investigated. The glass transition temperature (T(g)) of the samples was determined by modulated differential scanning calorimetry (MDSC). The morphologies of the granules formed by hot-melt extrusion and hot-melt granulation processes were investigated by scanning electron microscopy. The addition of 12% TEC to the polymer reduced the T(g) by 32.5 degrees C, while the reduction in the T(g) for the same level of CPM was 16.4 degrees C. The effect of TEC levels on drug release was dependent on the tablet preparation method. At high TEC levels, the release rate of CPM decreased in tablets prepared by direct compression and tablets made from compressed granules that had been prepared by high shear hot-melt granulation. However, the CPM release rate increased from hot-melt extruded tablets with increasing blends of plasticizer in the extruded tablets. An increase in the CPM content in the tablets resulted in an increase in the drug release rate. During high shear hot-melt granulation, the model drug adhered to the polymer to form a porous discontinuous structure. Following hot-melt extrusion, the drug was distributed at a molecular level in the continuous polymeric structure. The influence of both CPM and TEC levels on the drug release rate from these polymeric drug delivery systems was shown to be a function of whether the granules or tablets were formed by either hot-melt granulation or hot-melt extrusion, as well as the plasticization effects of both TEC and CPM on the acrylic polymer.  相似文献   

7.
In the current study, the influence of plasticizer level on drug release was investigated for solid dosage forms prepared by hot-melt extrusion and film coating. The properties of two highly water-soluble compounds, diltiazem hydrochloride (DTZ) and chlorpheniramine maleate (CPM), and a poorly water-soluble drug, indomethacin (IDM), were investigated in the melt extrudates containing either Eudragit® RSPO or Eudragit® RD 100 and triethyl citrate (TEC) as the plasticizer. In addition, pellets containing DTZ were film coated with Eudragit® RS 30D and varying levels of TEC using a fluidized bed coating unit. Differential scanning calorimetry (DSC) demonstrated that both CPM and IDM exhibited a plasticization effect on the acrylic polymers, whereas no plasticizing effect by DTZ on Eudragit® RSPO was observed. Thermogravimetric analysis (TGA) was used to investigate the thermal stability of the DTZ, Eudragit® RSPO and TEC at 140 °C, the maximum temperature used in the hot-melt extrusion process. The chemical stability of DTZ and IDM in the extrudate following hot-melt processing was determined by high pressure liquid chromatography (HPLC). Drug release rates of both DTZ and CPM from hot-melt extrudates increased with an increase in the TEC level in the formulations, while the release rate of DTZ from the Eudragit® RS 30D–coated pellets decreased with an increase in TEC in the coating dispersion. This phenomenon was due to the formation of a reservoir polymeric structure as a result of the thermal stress and shear stress involved in the hot-melt extrusion process regardless of the TEC level. In contrast, coalescence of the polymer particles in the film coating process was enhanced with higher levels of TEC, as demonstrated by scanning electron microscopy (SEM). The addition of TEC (0% to 8%) in the IDM hot-melt extrudate formulation had no influence on the drug release rate as the drug release rate was controlled by drug diffusion through the inside of the polymeric materials rather than between the polymer particles.  相似文献   

8.
Matrix-type pellets with controlled-release properties may be prepared by hot-melt extrusion applying a single-step, continuous process. However, the manufacture of gastric-resistant pellets is challenging due to the high glass transition temperature of most enteric polymers and an unacceptably high, diffusion-controlled drug release from the matrix during the acidic phase. The objective was to investigate the influence of three plasticizers (triethyl citrate, methylparaben and polyethylene glycol 8000) at two levels (10% or 20%) on the properties of hot-melt extruded Eudragit® S100 matrix pellets. Extrusion experiments showed that all plasticizers produced similar reductions in polymer melt viscosity. Differential scanning calorimetry and powder X-ray diffraction demonstrated that the solid state plasticizers were present in the amorphous state. The drug release in acidic medium was influenced by the aqueous solubility of the plasticizer. Less than 10% drug was released after 2 h at pH 1.2 when triethyl citrate or methylparaben was used, independent of the plasticizer level. Drug release at pH 7.4 resulted from polymer dissolution and was not influenced by low levels of plasticizer, but increased significantly at the 20% level. Mechanical testing by diametral compression demonstrated the high tensile strength of the hot-melt extruded pellets that decreased when plasticizers were present.  相似文献   

9.
Incomplete drug release and particle size-dependent dissolution performance can compromise the quality of controlled release matrix systems. The objective of the current study was to investigate the ability of citric acid monohydrate (CA MH) to enhance the release of diltiazem hydrochloride from melt extruded Eudragit((R)) RS PO tablets and to eliminate drug particle size effects. Preformulation studies demonstrated the thermal stability of all components, drug insolubility in the polymer but miscibility with the CA MH. Tablets with either constant polymer levels or constant drug-to-polymer ratios and containing different drug particle size fractions and increasing amounts of CA MH were manufactured by melt extrusion and characterized by dissolution testing, powder X-ray diffraction and scanning electron microscopy. The addition of CA MH to the formulation promoted the thermal processibility and matrix integrity by plasticization of the polymer. The drug release from systems with constant drug-to-polymer ratio was significantly increased when CA MH was added as a result of enhanced pore formation. Particle size effects were eliminated when large amounts of CA MH were used due to the loss of drug crystallinity. Matrix tablets with CA MH furthermore showed a faster and more complete drug release compared to systems with drug only or alternative pore formers (sucrose, NaCl, or PEG 3350). The enhanced drug release was attributed to the amorphous character of the soluble components, improved drug dispersion in the plasticized polymer along with increased polymer permeability. In summary, CA MH promoted the miscibility between the drug and Eudragit((R)) RS PO during hot-melt extrusion, resulting in the extrusion of an amorphous system with improved dissolution characteristics.  相似文献   

10.
The aim of this study was to improve the dissolution rate of efavirenz (EFV) by formulating a physically stable dispersion in polymers. Hot-melt extrusion (HME) was used to prepare solid solutions of EFV with Eudragit EPO (a low-glass transition polymer) or Plasdone S-630 (a high-glass transition polymer). The drug-polymer blends were characterized for their thermal and rheological properties as a function of drug concentration to understand their miscibility and processability by HME. The solid-state stability of extrudates was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and dissolution studies. Thermal and rheological studies revealed that the drug is miscible with both polymers, and a decrease in melt viscosity was observed as the drug concentration increased. XRD and DSC studies confirmed the existence of amorphous state of EFV in the extrudates during storage. The dissolution rate of EFV from the extrudates was substantially higher than the crystalline drug. FTIR studies revealed an interaction between the EFV and Plasdone S-630, which reduced the molecular mobility and prevented crystallization upon storage. EFV and Eudragit EPO systems lack specific interactions, but are less susceptible to crystallization due to the antiplasticization effect of the polymer.  相似文献   

11.
The objective of the study was to select solid-state plasticizers for hot-melt extrusion (HME) process. The physical and mechanical properties of plasticizers, in selected binary (polymer:plasticizer) and ternary (active pharmaceutical ingredient:polymer:plasticizer) systems, were evaluated to assess their effectiveness as processing aids for HME process. Indomethacin and Eudragit® E PO were selected as model active pharmaceutical ingredient and polymer, respectively. Solubility parameters, thermal analysis, and rheological evaluation were used as assessment tools. Based on comparable solubility parameters, stearic acid, glyceryl behenate, and polyethylene glycol 8000 were selected as solid-state plasticizers. Binary and ternary physical mixtures were evaluated as a function of plasticizer concentration for thermal and rheological behavior. The thermal and rheological assessments also confirmed the miscibility predictions from solubility parameters. The understanding of thermal and rheological properties of the various mixtures helped in predicating plasticization efficiency of stearic acid, glyceryl behenate, and polyethylene glycol 8000. The evaluation also provided insight into the properties of the final product. An empirical model was also developed correlating rheological property of physical mixtures to actual HME process. Based on plasticizer efficiency, solid-state plasticizers and processing conditions can be selected for a HME process.  相似文献   

12.
The aim of this study was to investigate the influence of sulfobutyl ether β-cyclodextrin (SBE7-β-CD; Captisol®) on the dissolution properties of a poorly water-soluble drug from extrudates prepared by hot-melt extrusion. Ketoprofen was employed as a model drug. Extrudates containing the parent β-cyclodextrin (β-CD) were also produced for comparative evaluation to assess the benefits of SBE7-β-CD. Hot-melt extrudates were produced at 100 °C, which was close to the melting point of ketoprofen. The physiochemical properties and the in vitro drug release properties of ketoprofen from extrudates were investigated and compared with samples prepared by physical mixing, co-grinding, freeze-drying and heat-treatment. The solubilizing effects and the interactions of ketoprofen with SBE7-β-CD and β-CD were investigated using phase solubility and NMR studies, respectively. The dissolution rate of ketoprofen from samples prepared by hot-melt extrusion with SBE7-β-CD was significantly faster than both the physical mixture and the hot-melt extrudates prepared with the parent β-CD. Moisture absorption studies revealed that the hygroscopic nature of SBE7-β-CD led to particle aggregation and a corresponding decrease in drug release rate for all samples. However, the samples prepared by melt extrusion were least affected by exposure to elevated humidity.  相似文献   

13.
The objective of this study was to investigate the influence of methylparaben, ibuprofen, chlorpheniramine maleate and theophylline on the thermal and mechanical properties of polymeric films of Eudragit RS 30 D. The effects of methylparaben and ibuprofen in the film coating on the rate of drug release from Eudragit RS 30 D coated beads were also studied. The physical and mechanical properties of the cast films and coated beads were investigated using thermal analysis, tensile testing, X-ray diffraction analysis and dissolution testing. The results demonstrated that the glass transition temperature of the Eudragit RS 30 D decreased with increasing levels of methylparaben, ibuprofen and chlorpheniramine maleate in the film. Theophylline exerted no influence on the thermal properties of the polymer. The higher levels of the ibuprofen and methylparaben incorporated into the film resulted in a decrease in the tensile strength of the film. The decrease in Young's modulus of Eudragit RS 30 D coated beads was attributed to an increase in the flexibility of the polymeric films when the level of methylparaben or ibuprofen in the polymeric dispersion was increased. The dissolution data demonstrated that the rate of release of the ibuprofen from coated beads was decreased by increasing the amount of ibuprofen and methylparaben in the polymeric film coating.  相似文献   

14.
Hot-melt extruded tablets were prepared using Eudragit S 100 as the polymeric carrier to target delivery of 5-aminosalicylic acid (5-ASA) to the colon. Scanning electron microscopy, modulated differential scanning calorimetry and X-ray diffraction analysis of the hot-melt tablet extrudates demonstrated that 5-ASA remained crystalline and was homogeneously dispersed throughout the polymer matrix. A pre-plasticization step was necessary when incorporating triethyl citrate (TEC) into the formulation in order to achieve uniform mixing of the polymer and plasticizer, effectively reduce the polymer glass transition temperature (T(g)), and to lower the processing temperatures. The concentration of TEC in the extrudates not only influenced the processing temperature, but also influenced the drug release rates from the extruded tablets due to leaching of the TEC during dissolution testing. Citric acid monohydrate was found to plasticize Eudragit S 100, and when combined with TEC in the powder blend, the temperatures required for processing were reduced. Tablets containing citric acid released drug at a slower rate as a result of the suppression of polymer ionization due to a decrease in the micro-environmental pH of the tablet. The drug release profiles of the extruded tablets were found to fit both diffusion and surface erosion models.  相似文献   

15.
The objective of the study was to characterize the physical and viscoelastic properties of binary mixtures of drug and selected polymers to assess their suitability for use in the hot-melt extrusion (HME) process as a means to improve solubility by manufacturing either solid dispersion or solid solution. Indomethacin (INM) was selected as a model drug. Based on comparable solubility parameters, the selected polymers were Eudragit EPO (EPO), polyvinylpyrrolidone/vinyl acetate copolymer (PVP-VA), polyvinylpyrrolidone K30 (PVPK30), and poloxamer 188 (P188). The various drug and polymer systems were characterized for thermal and rheological properties as a function of drug concentration to provide an insight into miscibility and processibility of these systems. From the thermal analysis studies, a single T(g) was observed for the binary mixtures of INM/EPO, INM/PVP-VA, and INM/PVPK30, indicating miscibility of drug and polymer in the given ratios. In the case of mixtures of INM/P188, two melting endotherms were observed with decreasing drug melting point as a function of polymer concentration indicating partial miscibility of drug in polymer. As part of the rheological evaluation, zero rate viscosity (eta(o)) and activation energy (E(a)) was determined for the various systems using torque rheometer at varying shear rates and temperatures. The eta(o) for binary mixtures of drug and EPO, PVP-VA and PVPK30 were found to be significantly lower as compared to pure polymer, indicating disruption of the polymer structure due to miscibility of the drug. On the other hand, INM/P188 mixtures showed a higher eta(o) compared to pure polymer indicating partial miscibility of drug and polymer. With respect to E(a), the mixtures of INM/EPO showed an increase in E(a) with increasing drug concentration, suggesting antiplasticization effect of the drug. These findings corroborate the thermal analysis results showing increase T(g) for the various binary mixtures. The mixtures of INM/PVP-VA showed a decrease in the E(a) with the increasing drug concentration suggesting a plasticization effect of the drug. The understanding of thermal and rheological properties of the various drug/polymer mixtures help established the processing conditions for hotmelt extrusion (such as extrusion temperatures and motor load) as well as provided insight into the properties of the final extrudates. Using the actual hot-melt processing, a model was developed correlating the zero rate viscosity to the motor load determined by rheological evaluation.  相似文献   

16.
Kollidon® SR as a drug carrier and two model drugs with two different melting points, ibuprofen and theophylline, were studied by hot-melt extrusion. Powder mixtures containing Kollidon® SR were extruded using a twin-screw extruder at temperatures 70 and 80 °C for ibuprofen and 80 and 90 °C for theophylline. The glass transition temperature (Tg) and maximum torque were inversely related to ibuprofen concentrations, indicating its plasticizing effect. The results of differential scanning calorimetry (DSC) and X-ray diffraction analysis showed that ibuprofen remained in an amorphous or dissolved state in the extrudates containing drug up to 35%, whereas theophylline was dispersed in the polymer matrix. The increase in amounts of ibuprofen or theophylline in the hot-melt extrudates resulted in the increase in the drug release rates. Theophylline release rate in hot-melt extruded matrices decreased as the extrusion temperature increased. In contrast, a higher processing temperature caused the higher ibuprofen release. This was a clear indication of the plasticizing effect of ibuprofen on Kollidon® SR and a result from water uptake. Theophylline release rate from hot-melt extrudates decreased with increasing triethyl citrate (TEC) level because of the formation of a denser matrix. By adding of Klucel® LF as a water-soluble additive to the hot-melt extruded matrices, an increase in ibuprofen and theophylline release rates was obtained.  相似文献   

17.
The objective of the present study was to investigate the influence of formulation factors on the physical properties of hot-melt extruded granules and compressed tablets containing wax as a thermal binder/retarding agent, and to compare the properties of granules and tablets with those prepared by a high-shear melt granulation (MG) method. Powder blends containing phenylpropanolamine hydrochloride, Precirol and various excipients were extruded in a single-screw extruder at open-end discharge conditions. The extrudates were then passed through a 14-mesh screen to form granules. The extrusion conditions and the optimum amount of wax to function as the thermal binder were dependent on the properties of the filler excipients. At the same wax level, drug release from tablets decreased in the order of using microcrystalline cellulose (MCC), lactose and Emcompress as the filler excipient. The observed differences in the dissolution properties of the tablets were due to the differences in the solubility, swellability and density of the filler excipients. Replacing Precirol with Sterotex K, a higher melting point wax, resulted in slightly increased dissolution rates, when the extrusion was performed at the same temperature conditions. Hot-melt extruded granules were observed to be less spherical than high-shear melt granules and showed lower values of bulk/tap densities. However, tablets containing MCC or lactose granules prepared by hot-melt extrusion (HME) exhibited higher hardness values. Slower drug release rates were found for tablets containing MCC by HME compared with MG. Analysis of the hot-melt extruded granules showed better drug content uniformity among granules of different size ranges compared with high-shear melt granules, resulting in a more reproducible drug release from the corresponding tablets.  相似文献   

18.

Purpose

Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated.

Methods

Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry. Extrudates containing a co-amorphous glass solution were produced and the solid-state composition of these was studied with DSC.

Results

Rheological analysis indicated that the studied systems display viscosities higher than expected for small molecule melts and addition of PEO decreased the viscosity of the melt. Extrudates of indomethacin-cimetidine alone displayed amorphous-amorphous phase separation after 4 weeks of storage, whereas no phase separation was observed during the 16 week storage of the indomethacin-cimetidine extrudates containing 5% (w/w) PEO.

Conclusions

Melt extrusion of co-amorphous extrudates with low amounts of polymer was found to be a feasible manufacturing technique. Addition of 5% (w/w) polymer reduced melt viscosity and prevented phase separation.
  相似文献   

19.
目的通过热熔挤出法制备阿戈美拉汀固体分散体。方法以共聚维酮为载体材料,采用热熔挤出技术制备阿戈美拉汀固体分散体。采用X射线粉末衍射技术考察不同比例共聚维酮对固体分散体中药物晶型稳定性的影响。结果当共聚维酮:药物≥2时,样品在高温加速后,其XRPD图谱中无药物晶型衍射峰出现。结论采用热熔挤出技术可以制备出晶型稳定的阿戈美拉汀固体分散体。  相似文献   

20.
The purpose of the present investigation is to emphasize the application of hot-melt extrusion technique (HMET) for the preparation of sustained release matrix formulation of highly dosed, freely soluble drugs. In this study, sustained release multiple unit dosage of venlafaxine hydrochloride (VH) was prepared by HMET. Custom design was used to screen the effect of four factors-type of polymer (ethylcellulose and eudragit RSPO) (X 1), amount of polymer (X 2), type of plasticizer (DBS, ATBC, TEC, and PEG) (X 3), and plasticizer concentration (X 4), on the drug release at 8 h (Y1) and machine torque (Y2). The experiments were carried out according to a four-factor 16-run statistical model and subjected to 12-h dissolution study in purified water. The significance of the model was indicated by ANOVA. Results of in vitro release study indicate that formulations prepared with higher amount of ethylcellulose and DBC show significant retardation at 8 h. The result shows that increase in concentration of polymer with the combination of water insoluble plasticizer (DBS and ATBC) has better sustained release while increasing concentration of TEC and PEG results faster in vitro release. Besides that increase in plasticizer concentration helps in reducing the melt temperature and machine torque. The in vivo study was performed, and formulations were compared using area under the plasma concentration-time curve (AUC0-∞), time to reach peak plasma concentration (Tmax), and peak plasma concentration (Cmax). The drug release profiles of extrudes were found to fit both diffusion and surface erosion models. Further to this, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction analysis of the hot-melt extrudates demonstrated that VH remained crystalline and was homogeneously dispersed throughout the polymer matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号