首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《药学学报(英文版)》2020,10(1):171-185
The prevalence of obesity-associated conditions raises new challenges in clinical medication. Although altered expression of drug-metabolizing enzymes (DMEs) has been shown in obesity, the impacts of obese levels (overweight, obesity, and severe obesity) on the expression of DMEs have not been elucidated. Especially, limited information is available on whether parental obese levels affect ontogenic expression of DMEs in children. Here, a high-fat diet (HFD) and three feeding durations were used to mimic different obese levels in C57BL/6 mice. The hepatic expression of five nuclear receptors (NRs) and nine DMEs was examined. In general, a trend of induced expression of NRs and DMEs (except for Cyp2c29 and 3a11) was observed in HFD groups compared to low-fat diet (LFD) groups. Differential effects of HFD on the hepatic expression of DMEs were found in adult mice at different obese levels. Family-based dietary style of an HFD altered the ontogenic expression of DMEs in the offspring older than 15 days. Furthermore, obese levels of parental mice affected the hepatic expression of DMEs in offspring. Overall, the results indicate that obese levels affected expression of the DMEs in adult individuals and that of their children. Drug dosage might need to be optimized based on the obese levels.  相似文献   

2.
3.
Flavin containing monooxygenases (FMOs) represent one of the predominant types of phase I drug metabolizing enzymes (DMEs), and thus play an important role in the metabolism of xeno- and endobiotics for the generation of their corresponding oxides. These oxides often display biological activities, however they are difficult to study since their chemical or biological synthesis is generally challenging even though only small amounts are required to evaluate their efficacy and safety. Previously, we constructed a DME expression system for cytochrome P450, UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) using yeast cells, and successfully produced xenobiotic metabolites in a whole-cell dependent manner. In this study, we developed a heterologous expression system for human FMOs, including FMO1–FMO5, in Saccharomyces cerevisiae and examined its N- and S-oxide productivity. The recombinant yeast cells expressed each of the FMO successfully, and the FMO4 transformant produced N- and S-oxide metabolites at several milligrams per liter within 24 h. This whole-cell dependent biosynthesis enabled the production of N- and S-oxides without the use of the expensive cofactor NADPH. Such novel yeast expression system could be a powerful tool for the production of oxide metabolites.  相似文献   

4.
5.
《药学学报(英文版)》2021,11(12):3847-3856
Bile acids (BAs) are amphipathic molecules important for metabolism of cholesterol, absorption of lipids and lipid soluble vitamins, bile flow, and regulation of gut microbiome. There are over 30 different BA species known to exist in humans and mice, which are endogenous modulators of at least 6 different membrane or nuclear receptors. This diversity of ligands and receptors play important roles in health and disease; however, the full functions of each individual BA in vivo remain unclear. We generated a mouse model lacking the initiating enzymes, CYP7A1 and CYP27A1, in the two main pathways of BA synthesis. Because females are more susceptible to BA related diseases, such as intrahepatic cholestasis of pregnancy, we expanded this model into female mice. The null mice of Cyp7a1 and Cyp27a1 were crossbred to create double knockout (DKO) mice. BA concentrations in female DKO mice had reductions in serum (63%), liver (83%), gallbladder (94%), and small intestine (85%), as compared to WT mice. Despite low BA levels, DKO mice had a similar expression pattern to that of WT mice for genes involved in BA regulation, synthesis, conjugation, and transport. Additionally, through treatment with a synthetic FXR agonist, GW4064, female DKO mice responded to FXR activation similarly to WT mice.  相似文献   

6.
7.
8.
Cytochrome P450 1A (CYP1A), one of the major CYP subfamily in humans, not only metabolizes xenobiotics including clinical drugs and pollutants in the environment, but also mediates the biotransformation of important endogenous substances. In particular, some single nucleotide polymorphisms (SNPs) for CYP1A genes may affect the metabolic ability of endogenous substances, leading to some physiological or pathological changes in humans. This review first summarizes the metabolism of endogenous substances by CYP1A, and then introduces the research progress of CYP1A SNPs, especially the research related to human diseases. Finally, the relationship between SNPs and diseases is discussed. In addition, potential animal models for CYP1A gene editing are summarized. In conclusion, CYP1A plays an important role in maintaining the health in the body.  相似文献   

9.
《药学学报(英文版)》2020,10(1):153-158
Parenteral nutrition-associated liver disease (PNALD) is a liver dysfunction caused by various risk factors presented in patients receiving total parenteral nutrition (TPN). Omega-6 rich Intralipid® and omega-3 rich Omegaven® are two intravenous lipid emulsions used in TPN. TPN could affect the hepatic expression of genes in anti-oxidative stress, but it's unknown whether TPN affects genes in drug metabolism. In this study, either Intralipid®- or Omegaven®-based TPN was administered to mice and the expression of a cohort of genes involved in anti-oxidative stress or drug metabolism was analyzed, glutathione (GSH) levels were measured, and protein levels for two key drug metabolism genes were determined. Overall, the expression of most genes was downregulated by Intralipid®-based TPN (Gstp1, Gstm1, 3, 6, Nqo1, Ho-1, Mt-1, Gclc, Gclm, Cyp2d9, 2f2, 2b10, and 3a11). Omegaven® showed similar results as Intralipid® except for preserving the expression of Gstm1 and Cyp3a11, and increasing Ho-1. Total GSH levels were decreased by Intralipid®, but increased by Omegaven®. CYP3A11 protein levels were increased by Omegaven®. In conclusion, TPN reduced the expression of many genes involved in anti-oxidative stress and drug metabolism in mice. However, Omegaven® preserved expression of Cyp3a11, suggesting another beneficial effect of Omegaven® in protecting liver functions.  相似文献   

10.
Background & AimsAlthough interactions between enteric glial cells (EGCs) and enteric mast cells have been demonstrated to play an important role in the pathogenesis of inflammatory bowel disease (IBD), the exact mechanisms by which EGCs regulate enteric mast cells are still unknown. The aims of this study were to investigate whether glial-derived neurotrophic factor (GDNF), which has been confirmed to be produced mostly by EGCs, might regulate enteric mast cells and ameliorate dextran sulfate sodium (DSS)-induced experimental colitis.MethodsRecombinant adenoviral vectors encoding GDNF (Ad-GDNF) were administered intracolonically in experimental colitis induced by DSS. The disease activity index and histological score were measured. The expression of tumour necrosis factor-α (TNF-α), interleukin-6 and myeloperoxidase (MPO) activity were measured by ELISA assay. The expression of trypsin and β-hexosaminidase were evaluated. GDNF specific receptor (GFR-α1/RET) was detected. The calcium reflux was tested by microplate reader. The expression p-JNK was analyzed by western blot assay.ResultsGDNF resulted in a significant inhibition of the activation of enteric mast cells by down-regulating JNK signal pathway, lessening intracellular calcium influx, and then reducing the degranulation as well as the expression of pro-inflammatory cytokines via combing with its receptor (GFR-α1/RET) in mast cells, and these inhibitory effects were abrogated by treatment with neutralizing antibody against GDNF. Moreover, the administration of GDNF led to an amelioration of experimental colitis.ConclusionsGDNF are able to regulate enteric mast cells and ameliorate experimental colitis. GDNF might be an important mediator of the cross-talk between EGCs and enteric mast cells, and GDNF might be a useful therapeutic drug for IBD.  相似文献   

11.
12.
Tofacitinib (TFT), a JAK inhibitor used for the treatment of rheumatoid arthritis and other diseases, is associated with severe liver injury that is believed to be caused by its reactive aldehyde or epoxide metabolites. In this study, we synthesized six tofacitinib analogs designed to avoid the formation of reactive metabolites and evaluated their JAK3 inhibitory activity, metabolic stability, CYP3A time-dependent inhibition, and cytotoxicity. Our data indicated that purine analog 3, which showed little inhibition of CYP3A and cytotoxicity and inhibited JAK3 in the nanomolar range, could be a safer drug candidate than TFT. In addition, the results of the bioactivation study using TFT and its analogs suggest that the epoxide metabolite might contribute to TFT-induced CYP3A4 mechanism-based inhibition and hepatic toxicity.  相似文献   

13.
《药学学报(英文版)》2022,12(4):1976-1986
Currently, the development of selective fluorescent probes toward targeted enzymes is still a great challenge, due to the existence of numerous isoenzymes that share similar catalytic capacity. Herein, a double-filtering strategy was established to effectively develop isoenzyme-specific fluorescent probe(s) for cytochrome P450 (CYP) which are key enzymes involving in metabolism of endogenous substances and drugs. In the first-stage of our filtering approach, near-infrared (NIR) fluorophores with alkoxyl group were prepared for the screening of CYP-activated fluorescent substrates using a CYPs-dependent incubation system. In the second stage of our filtering approach, these candidates were further screened using reverse protein-ligand docking to effectively determine CYP isoenzyme-specific probe(s). Using our double-filtering approach, probes S9 and S10 were successfully developed for the real-time and selective detection of CYP2C9 and CYP2J2, respectively, to facilitate high-throughput screening and assessment of CYP2C9-mediated clinical drug interaction risks and CYP2J2-associated disease diagnosis. These observations suggest that our strategy could be used to develop the isoform-specific probes for CYPs.  相似文献   

14.
《药学学报(英文版)》2021,11(9):2768-2782
Pyroptosis is the process of inflammatory cell death. The primary function of pyroptosis is to induce strong inflammatory responses that defend the host against microbe infection. Excessive pyroptosis, however, leads to several inflammatory diseases, including sepsis and autoimmune disorders. Pyroptosis can be canonical or noncanonical. Upon microbe infection, the canonical pathway responds to pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), while the noncanonical pathway responds to intracellular lipopolysaccharides (LPS) of Gram-negative bacteria. The last step of pyroptosis requires the cleavage of gasdermin D (GsdmD) at D275 (numbering after human GSDMD) into N- and C-termini by caspase 1 in the canonical pathway and caspase 4/5/11 (caspase 4/5 in humans, caspase 11 in mice) in the noncanonical pathway. Upon cleavage, the N-terminus of GsdmD (GsdmD-N) forms a transmembrane pore that releases cytokines such as IL-1β and IL-18 and disturbs the regulation of ions and water, eventually resulting in strong inflammation and cell death. Since GsdmD is the effector of pyroptosis, promising inhibitors of GsdmD have been developed for inflammatory diseases. This review will focus on the roles of GsdmD during pyroptosis and in diseases.  相似文献   

15.
《药学学报(英文版)》2021,11(12):3740-3755
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug, which is safe at therapeutic doses but can cause severe liver injury and even liver failure after overdoses. The mouse model of APAP hepatotoxicity recapitulates closely the human pathophysiology. As a result, this clinically relevant model is frequently used to study mechanisms of drug-induced liver injury and even more so to test potential therapeutic interventions. However, the complexity of the model requires a thorough understanding of the pathophysiology to obtain valid results and mechanistic information that is translatable to the clinic. However, many studies using this model are flawed, which jeopardizes the scientific and clinical relevance. The purpose of this review is to provide a framework of the model where mechanistically sound and clinically relevant data can be obtained. The discussion provides insight into the injury mechanisms and how to study it including the critical roles of drug metabolism, mitochondrial dysfunction, necrotic cell death, autophagy and the sterile inflammatory response. In addition, the most frequently made mistakes when using this model are discussed. Thus, considering these recommendations when studying APAP hepatotoxicity will facilitate the discovery of more clinically relevant interventions.  相似文献   

16.
《药学学报(英文版)》2022,12(5):2129-2149
Cardiometabolic disease (CMD), characterized with metabolic disorder triggered cardiovascular events, is a leading cause of death and disability. Metabolic disorders trigger chronic low-grade inflammation, and actually, a new concept of metaflammation has been proposed to define the state of metabolism connected with immunological adaptations. Amongst the continuously increased list of systemic metabolites in regulation of immune system, bile acids (BAs) represent a distinct class of metabolites implicated in the whole process of CMD development because of its multifaceted roles in shaping systemic immunometabolism. BAs can directly modulate the immune system by either boosting or inhibiting inflammatory responses via diverse mechanisms. Moreover, BAs are key determinants in maintaining the dynamic communication between the host and microbiota. Importantly, BAs via targeting Farnesoid X receptor (FXR) and diverse other nuclear receptors play key roles in regulating metabolic homeostasis of lipids, glucose, and amino acids. Moreover, BAs axis per se is susceptible to inflammatory and metabolic intervention, and thereby BAs axis may constitute a reciprocal regulatory loop in metaflammation. We thus propose that BAs axis represents a core coordinator in integrating systemic immunometabolism implicated in the process of CMD. We provide an updated summary and an intensive discussion about how BAs shape both the innate and adaptive immune system, and how BAs axis function as a core coordinator in integrating metabolic disorder to chronic inflammation in conditions of CMD.  相似文献   

17.
It has been suggested that the fruit components resveratrol (RSV), 6′, 7′-dihydroxybergamottin (DHB), and bergamottin (BG) might inhibit cytochrome P450 2C19 (CYP2C19) activity, but the mode and potency of such inhibition are yet to be investigated. This study aimed to investigate the mode and kinetics of the inhibition of CYP2C19-based omeprazole metabolism by RSV or grapefruit juice components (DHB or BG). RSV and DHB reduced CYP2C19 activity in a preincubation time-dependent manner, suggesting that they inactivated CYP2C19 via mechanism-based inhibition (MBI). Although BG inactivated CYP2C19 in a preincubation time- and concentration-dependent manner, suggesting that both MBI and reversible inhibition contributed to these effects, the concentration required to achieve 50% inhibition was 26-fold higher for reversible inhibition than for MBI (0.859 and 0.0331 μM, respectively), indicating that the inhibition of CYP2C19 by BG is primarily attributable to MBI. Based on the estimated intestinal concentrations of these components, it is considered that >90% of CYP2C19 would be inactivated after the consumption of normal amounts of grapefruit juice or RSV-containing substances. In conclusion, these findings suggest that food containing these components has the potential to evoke drug-food interactions caused by the MBI of intestinal CYP2C19 activity in the clinical setting.  相似文献   

18.
19.
Liver disease is a global health problem and is a primary cause of mortality and morbidity worldwide. Specifically, it accounts for approximately two million deaths per year worldwide. The common causes of mortality are the complications of liver cirrhosis, viral hepatitis and hepatocellular carcinoma (HCC). The mechanism of immune response and infiltration of cellular immunity is essential for promoting hepatic inflammatory, especially when the liver is abundant with lymphocytes and phagocytic cells. The injured and immunity cells secret different types of interleukins (cytokines), which can directly or indirectly amplify or inhibit liver inflammation. Many types of cells can produce interleukin-34 (IL-34) that induces the release of multiple inflammatory factors in patients via interaction with various cytokines. This phenomenon leads to the enlargement of the inflammatory response to liver diseases and induces liver fibrosis. This review highlights the proposed roles of IL-34 in liver diseases and discusses the recent findings of IL-34 that support its emerging role in HCC. Specifically, the facilitating effects of these new insights on the rational development of IL-34 for targeted therapies in the future are explored.  相似文献   

20.
《药学学报(英文版)》2020,10(10):1926-1942
Acetylcholine (ACh) regulates inflammation via α7 nicotinic acetylcholine receptor (α7 nAChR). Acetylcholinesterase (AChE), an enzyme hydrolyzing ACh, is expressed in immune cells suggesting non-classical function in inflammatory responses. Here, the expression of PRiMA-linked G4 AChE was identified on the surface of macrophages. In lipopolysaccharide-induced inflammatory processes, AChE was upregulated by the binding of NF-κB onto the ACHE promotor. Conversely, the overexpression of G4 AChE inhibited ACh-suppressed cytokine release and cell migration, which was in contrast to that of applied AChE inhibitors. AChEmt, a DNA construct without enzymatic activity, was adopted to identify the protein role of AChE in immune system. Overexpression of G4 AChEmt induced cell migration and inhibited ACh-suppressed cell migration. The co-localization of α7 nAChR and AChE was found in macrophages, suggesting the potential interaction of α7 nAChR and AChE. Besides, immunoprecipitation showed a close association of α7 nAChR and AChE protein in cell membrane. Hence, the novel function of AChE in macrophage by interacting with α7 nAChR was determined. Together with hydrolysis of ACh, AChE plays a direct role in the regulation of inflammatory response. As such, AChE could serve as a novel target to treat age-related diseases by anti-inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号