首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are characterized by excessive intraalveolar fibrin deposition, driven, at least in part by inflammation. The imbalance between activation of coagulation and inhibition of fibrinolysis in patients with ALI/ARDS favors fibrin formation and appears to occur both systemically and in the lung and airspace. Tissue factor (TF), a key mediator of the activation of coagulation in the lung, has been implicated in the pathogenesis of ALI/ARDS. As such, there have been numerous investigations modulating TF activity in a variety of experimental systems in order to develop new therapeutic strategies for ALI/ARDS. This review will summarize current understanding of the role of TF and other proteins of the coagulation cascade as well the fibrinolysis pathway in the development of ALI/ARDS with an emphasis on the pathways that are potential therapeutic targets. These include the TF inhibitor pathway, the protein C pathway, antithrombin, heparin, and modulation of fibrinolysis through plasminogen activator- 1 (PAI-1) or plasminogen activators (PA). Although experimental studies show promising results, clinical trials to date have proven unsuccessful in improving patient outcomes. Modulation of coagulation and fibrinolysis has complex effects on both hemostasis and inflammatory pathways and further studies are needed to develop new treatment strategies for patients with ALI/ARDS.  相似文献   

2.
There is compelling evidence that uncontrolled activation of the coagulation cascade following lung injury contributes to the development of lung inflammation and fibrosis in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and fibrotic lung disease. This article reviews our current understanding of the mechanisms leading to the activation of the coagulation cascade in response to lung injury and the evidence that excessive procoagulant activity is of pathophysiological significance in these disease settings. Current evidence suggests that the tissue factor-dependent extrinsic pathway is the predominant mechanism by which the coagulation cascade is locally activated in the lungs of patients with ALI/ARDS and pulmonary fibrosis. Whilst, fibrin deposition might contribute to the pathophysiology of ALI/ARDS following systemic insult; current evidence suggests that the cellular effects mediated via activation of proteinase-activated receptors (PARs) may be of particular importance in influencing inflammatory and fibroproliferative responses in experimental models involving direct injury to the lung. In this regard, studies in PAR(1) knockout mice have shown that this receptor plays a major role in orchestrating the interplay between coagulation, inflammation and lung fibrosis. This review will focus on our current understanding of excessive procoagulant signalling in acute and chronic lung injury and will highlight the novel opportunities that this may present for therapeutic intervention.  相似文献   

3.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high mortality rates despite therapeutic advances. The pathogenesis of ALI and ARDS is similar to that of sepsis, as these disease states involve uncontrolled host defense responses that lead to inflammation, endothelial damage, enhanced coagulation, diminished fibrinolysis, and fibroproliferation. Recent studies of anticoagulants have shown positive outcomes in patients with severe sepsis. In addition, emerging evidence suggests that the use of anticoagulants, such as tissue factor pathway inhibitor, antithrombin, thrombomodulin, heparin, activated protein C, and fibrinolytics (plasminogen activators and particularly tissue plasminogen activator), may be useful in the treatment of ALI and ARDS. Data from experimental models of sepsis, ALI, and ARDS indicate that some of these agents improve lung function and oxygenation. Although clinical data are less convincing than these findings, results from clinical trials may influence the design of future studies.  相似文献   

4.
Transfusion-related acute lung injury (TRALI) is a subcategory of acute lung injury (ALI). As such, there are many similarities between the syndromes, both clinically and pathophysiologically. Pulmonary changes in fibrin turnover have emerged as a hallmark of ALI, thereby initiating studies investigating the potential of therapeutic interventions aimed at ameliorating this so-called pulmonary coagulopathy. Enhanced coagulation and impaired fibrinolysis are probably also important features of TRALI. In particular, platelets play an important role in mediating injury during a TRALI reaction. In this narrative review, the evidence of the role of coagulopathy and platelet activation in TRALI is discussed. Given that host risk factors for acquiring TRALI have been identified and that there is a time frame in which a preventive strategy in patients at risk for TRALI can be executed, preventive strategies are suggested. In this review, we discuss potential preventive anticoagulant interventions.  相似文献   

5.
Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) frequently necessitate mechanical ventilation in the intensive care unit. The syndromes have a high mortality rate and there is at present no treatment specifically directed at the underlying pathogenesis. Central in the pathophysiology of ALI/ARDS is alveolocapillary inflammation leading to permeability edema. As a result of the crosstalk between inflammation and coagulation, activation of proinflammatory and procoagulant/antifibrinolytic pathways contributes to disruption of the endothelial barrier. Protein C (PC) plays a central role in maintaining the equilibrium between coagulation and inflammation. Additionally, natural anticoagulants, such as PC, are depleted, both in blood as well as in the lung. Therefore, the PC system is of interest as a therapeutic target in patients with ALI/ARDS. Method: This review is based on a Medline search of relevant basic and clinical studies. Objective: It discusses the potential role of activated PC in modulating the proinflammatory/procoagulant state for enhancing endothelial barrier function in animal models and human ALI/ARDS.  相似文献   

6.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are acute life-threatening forms of hypoxemic respiratory failure. ALI/ARDS patients require intensive care with prolonged mechanical ventilation. Despite advances in our understanding of the pathophysiology of ALI/ARDS, mortality rates remain > 30% and survivors suffer significant decrements in their quality of life. The evolving understanding of ALI/ARDS and the complex interactions involved in ALI/ARDS open the door for many potential targets for treatment. The condition is characterised by an acute inflammatory state that leads to increased capillary permeability and accumulation of proteinaceous pulmonary oedema. The changes that occur as a result of this inflammation clinically manifest themselves as hypoxemia, infiltrates on chest radiograph and reduced lung compliance. Many years have been dedicated to analysing the complexities involved in ALI/ARDS in order to improve current and future possibilities for treatment, with the aim of improving patient outcomes. Although some therapies have demonstrated benefits of improved oxygenation, such as surfactant and nitric oxide, these benefits have not translated into reductions in the duration of mechanical ventilation or mortality. Inflammatory mediator-targeted therapies were promising early on; however, larger trials have found therapies such as cytokine modulation, platelet-activating factor inhibition and neutrophil elastase inhibitors to be ineffective in the treatment of ALI/ARDS. Preclinical studies with beta2-agonists and granulocyte macrophage colony-stimulating factor have shown promise for restoring alveolar capillary barrier integrity or reducing pulmonary oedema, and further studies are being conducted to test for true clinical benefit. Despite previous therapeutic failures, newer surfactant formulations have shown promise, particularly in patients with direct forms of lung injury, and are currently in Phase III trials. Anticoagulant therapy with activated protein C has been shown to improve survival in sepsis, the most common risk factor for the development of ALI/ARDS, and is now being studied in ALI/ARDS. Until new data emerge, the focus must remain on supportive care, including optimised mechanical ventilation, nutritional support, manipulation of fluid balance and prevention of intervening medical complications.  相似文献   

7.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are acute life-threatening forms of hypoxemic respiratory failure. ALI/ARDS patients require intensive care with prolonged mechanical ventilation. Despite advances in our understanding of the pathophysiology of ALI/ARDS, mortality rates remain > 30% and survivors suffer significant decrements in their quality of life. The evolving understanding of ALI/ARDS and the complex interactions involved in ALI/ARDS open the door for many potential targets for treatment. The condition is characterised by an acute inflammatory state that leads to increased capillary permeability and accumulation of proteinaceous pulmonary oedema. The changes that occur as a result of this inflammation clinically manifest themselves as hypoxemia, infiltrates on chest radiograph and reduced lung compliance. Many years have been dedicated to analysing the complexities involved in ALI/ARDS in order to improve current and future possibilities for treatment, with the aim of improving patient outcomes. Although some therapies have demonstrated benefits of improved oxygenation, such as surfactant and nitric oxide, these benefits have not translated into reductions in the duration of mechanical ventilation or mortality. Inflammatory mediator-targeted therapies were promising early on; however, larger trials have found therapies such as cytokine modulation, platelet-activating factor inhibition and neutrophil elastase inhibitors to be ineffective in the treatment of ALI/ARDS. Preclinical studies with β2-agonists and granulocyte macrophage colony-stimulating factor have shown promise for restoring alveolar capillary barrier integrity or reducing pulmonary oedema, and further studies are being conducted to test for true clinical benefit. Despite previous therapeutic failures, newer surfactant formulations have shown promise, particularly in patients with direct forms of lung injury, and are currently in Phase III trials. Anticoagulant therapy with activated protein C has been shown to improve survival in sepsis, the most common risk factor for the development of ALI/ARDS, and is now being studied in ALI/ARDS. Until new data emerge, the focus must remain on supportive care, including optimised mechanical ventilation, nutritional support, manipulation of fluid balance and prevention of intervening medical complications.  相似文献   

8.
Natural pulmonary surfactant is a complex mixture of lipids and proteins with many biological functions. Surfactant is responsible for lowering the surface tension within alveoli and maintaining the functional integrity of the distal airways. In addition to this function surfactant components represent important elements of the host defence system of the lung. Acute Respiratory Distress Syndrome (ARDS) and Acute Lung Injury (ALI) are syndromes characterised by reduced pulmonary gas exchange due to diffuse injury to the alveolar-capillary barrier. The alveoli fill with proteinaceous fluid, and there is a marked infiltrate of acute inflammatory cells. ARDS and ALI may occur after both direct lung injury such smoke inhalation, and after indirect lung injury such as in sepsis. Qualitative and quantitative surfactant deficiencies are present in individuals suffering from ARDS and ALI, and the role of exogenous surfactant treatment in these conditions has attracted considerable interest. Most clinical studies have shown only improvements in the oxygenation of patients, but a recent study has, for the first time, demonstrated a reduction in the mortality of children with ARDS and ALI treated with exogenous surfactant. Given the differences that exist in surfactant composition, dosing schedules and the pathological processes responsible for ALI, it is clear that considerable work remains to be done in this field.  相似文献   

9.
Acute respiratory distress syndrome (ARDS), is characterised by capillary permeability and pulmonary oedema formation and may complicate a variety of medical and surgical illnesses. As a self-perpetuating state of inflammatory derangement, acute lung injury (ALI)/ARDS is manifest clinically as rapid development of radiographic infiltrates, severe hypoxaemia and reduced lung compliance. Over the years, researchers have made significant progress in elucidating the pathophysiology of this complex syndrome. Therapies targeting specific pathophysiologic steps in the development or persistence of this syndrome are in various stages of laboratory and clinical testing. Results to date have shown nitric oxide (NO) to improve oxygenation in the majority of patients but fail to improve mortality. Surfactant replacement has had limited success in adults, but new formulations and delivery methods may prove beneficial. Several inflammatory mediator-targeted therapies have progressed successfully through early clinical evaluation. Among these, neutrophil elastase inhibitors have shown the most promise and are currently undergoing Phase III trials. Other mediator-targeted therapies, such as prostaglandin E1, IL-10 and platelet activating factor antagonists, have not been found efficacious in large clinical trials of ARDS. However, these therapies, along with coagulation modulators, may have a favourable impact on ARDS by improving outcomes in sepsis, the greatest risk factor for developing this condition. In the interim, supportive care through improvements in mechanical ventilation are beneficial, while specific fluid balance and nutrition strategies may prove advantageous.  相似文献   

10.
《Vascular pharmacology》2009,50(4-6):119-133
Acute lung injury (ALI) and its most severe extreme the acute respiratory distress syndrome (ARDS) refer to increased-permeability pulmonary edema caused by a variety of pulmonary or systemic insults. ALI and in particular ARDS, are usually accompanied by refractory hypoxemia and the need for mechanical ventilation. In most cases, an exaggerated inflammatory and pro-thrombotic reaction to an initial stimulus, such as systemic infection, elicits disruption of the alveolo-capillary membrane and vascular fluid leak. The pulmonary endothelium is a major metabolic organ promoting adequate pulmonary and systemic vascular homeostasis, and a main target of circulating cells and humoral mediators under injury; pulmonary endothelium is therefore critically involved in the pathogenesis of ALI. In this review we will discuss mechanisms of pulmonary endothelial dysfunction and edema generation in the lung with special emphasis on the interplay between the endothelium, the immune and hemostatic systems, and highlight how these principles apply in the context of defined disorders and specific insults implicated in ALI pathogenesis.  相似文献   

11.
Acute lung injury (ALI) and its most severe extreme the acute respiratory distress syndrome (ARDS) refer to increased-permeability pulmonary edema caused by a variety of pulmonary or systemic insults. ALI and in particular ARDS, are usually accompanied by refractory hypoxemia and the need for mechanical ventilation. In most cases, an exaggerated inflammatory and pro-thrombotic reaction to an initial stimulus, such as systemic infection, elicits disruption of the alveolo-capillary membrane and vascular fluid leak. The pulmonary endothelium is a major metabolic organ promoting adequate pulmonary and systemic vascular homeostasis, and a main target of circulating cells and humoral mediators under injury; pulmonary endothelium is therefore critically involved in the pathogenesis of ALI. In this review we will discuss mechanisms of pulmonary endothelial dysfunction and edema generation in the lung with special emphasis on the interplay between the endothelium, the immune and hemostatic systems, and highlight how these principles apply in the context of defined disorders and specific insults implicated in ALI pathogenesis.  相似文献   

12.
Current pharmacotherapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is not optimal, and the biological and physiological complexity of these severe lung injury syndromes requires consideration of combined-agent treatments or agents with pleiotropic action. In this regard, exogenous erythropoietin (EPO) represents a possible candidate since a number of preclinical studies have revealed beneficial effects of EPO administration in various experimental models of ALI. Taken together, this treatment strategy is not a single mediator approach, but it rather provides protection by modulating multiple levels of early signaling pathways involved in apoptosis, inflammation, and peroxidation, potentially restoring overall homeostasis. Furthermore, EPO appears to confer vascular protection by promoting angiogenesis. However, only preliminary studies exist and more experimental and clinical studies are necessary to clarify the efficacy and potentially cytoprotective mechanisms of EPO action. In addition to the attempts to optimize the dose and timing of EPO administration, it would be of great value to minimize any potential toxicity, which is essential for EPO to fulfill its role as a potential candidate for the treatment of ALI in routine clinical practice. The present article reviews recent advances that have elucidated biological and biochemical activities of EPO that may be potentially applicable for ALI/ARDS management.  相似文献   

13.
Acute respiratory distress syndrome or acute lung injury (ARDS)/(ALI) involve the severe lung injury with pulmonary vascular hyper-permeability and hypoxemia induced by inflammatory reactions. Since ARDS/ALI carries high mortality, the development of new drugs against ARDS/ALI is required. We examined the effect of tranilast, an anti-allergic drug, on vascular hyper-permeability in the lungs and airways, and on hypoxemia, in oleic acid (OA)-induced acute lung injury, an animal model of ARDS/ALI. The increase in pulmonary and airway vascular permeability and the decrease in partial oxygen pressure of arterial blood induced by an intravenous injection of OA were drastically ameliorated by the oral administration of tranilast in a dose-dependent manner. This is the first report to prove that tranilast prevents pulmonary and airway vascular permeability and hypoxemia induced by OA. These results suggest that tranilast may be a candidate drug for the treatment of ARDS/ALI.  相似文献   

14.
Background: Sepsis and acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are life-threatening syndromes characterised by inflammation and increased vascular permeability. Amongst other factors, the angiopoietin–tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2) system is involved. Objective: To explore whether the angiopoietin–Tie2 system provides suitable targets for the treatment of sepsis and ALI/ARDS. Methods: Original experimental and patient studies on angiopoietins and sepsis/endotoxemia, inflammation, lung injury, hyperpermeability, apoptosis, organ functions and vital outcomes were reviewed. Results/conclusion: The angiopoietin–Tie2 system controls the responsiveness of the endothelium to inflammatory, hyperpermeability, apoptosis and vasoreactive stimuli. Angiopoietin-2 provokes inflammation and vascular hyperpermeability, while angiopoietin-1 has a protective effect. Targeted angiopoietin-2 inhibition with RNA aptamers or blocking antibodies is a potential anti-inflammatory and anti-vascular hyperpermeability strategy in the treatment of sepsis and ALI/ARDS.  相似文献   

15.
Ⅱ型肺泡上皮细胞与急性肺损伤的研究进展   总被引:1,自引:0,他引:1  
AECⅡ是肺泡壁的重要组成部分,也是ALI/ARDS发生、发展的重要参与者。AECⅡ可通过分泌炎症介质和促凝、抗凝因子参与ALI时全身炎症反应综合征和凝血反应失衡的形成。AECⅡ上Na+-K+-ATP酶活性以及数量的下调加重了ALI时的肺水肿。肺组织内的AECⅡ增生并转化为AECⅠ以及间质细胞参与了肺损伤后的修复和纤维化的形成。而且,AECⅡ还具有免疫调节功能,参与肺组织内的防御反应。近年来研究发现,与AECⅡ相关的生物标志物SP-D和KL-6与ALI/ARDS肺损伤的严重程度及疾病的预后相关,但尚无对SP-D或KL-6与炎症反应相关性的研究。  相似文献   

16.
Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, and there is a significant need for more effective medicinal chemical agents for use in these severe and lethal lung injury syndromes. To facilitate future chemical-based drug discovery research on new agent development, this paper reviews present pharmacotherapy for ALI/ARDS in the context of biological and biochemical drug activities. The complex lung injury pathophysiology of ALI/ARDS offers an array of possible targets for drug therapy, including inflammation, cell and tissue injury, vascular dysfunction, surfactant dysfunction, and oxidant injury. Added targets for pharmacotherapy outside the lungs may also be present, since multiorgan or systemic pathology is common in ALI/ARDS. The biological and physiological complexity of ALI/ARDS requires the consideration of combined-agent treatments in addition to single-agent therapies. A number of pharmacologic agents have been studied individually in ALI/ARDS, with limited or minimal success in improving survival. However, many of these agents have complementary biological/biochemical activities with the potential for synergy or additivity in combination therapy as discussed in this article.  相似文献   

17.
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an acute life-threatening form of hypoxemic respiratory failure with a high mortality rate, and there is still a great need for more effective therapies for such a severe and lethal disease. Dysfunction of endothelial and epithelial barriers is one of the most important mechanisms in hypoxia-associated ALI/ARDS. The acceleration of the epithelial repair process in the injured lung may provide an effective therapeutic target. KGF-2, a potent alveolar epithelial cell mitogen, plays an important role in organ morphogenesis and epithelial differentiation, and modulates a variety of mechanisms recognized to be important in alveolar repair and resolution in ALI/ARDS. Preclinical and clinical studies have suggested that KGF-2 may be the candidate of novel therapies for alveolar epithelial damage during ALI/ARDS.  相似文献   

18.
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an acute life-threatening form of hypoxemic respiratory failure with a high mortality rate, and there is still a great need for more effective therapies for such a severe and lethal disease. Dysfunction of endothelial and epithelial barriers is one of the most important mechanisms in hypoxia-associated ALI/ARDS. The acceleration of the epithelial repair process in the injured lung may provide an effective therapeutic target. KGF-2, a potent alveolar epithelial cell mitogen, plays an important role in organ morphogenesis and epithelial differentiation, and modulates a variety of mechanisms recognized to be important in alveolar repair and resolution in ALI/ARDS. Preclinical and clinical studies have suggested that KGF-2 may be the candidate of novel therapies for alveolar epithelial damage during ALI/ARDS.  相似文献   

19.
20.
The acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury (ALI). Its pathogenesis is closely linked with reactive oxygen species (ROS). Antioxidation has been considered as an efficient treatment. Besides, liposomes are widely investigated as potential drug carriers due to their ability to protect and carry drug molecules to the target organ such as the lung. The present study was undertaken to investigate whether dipyridamole (DIP), delivered as a liposomal preparation, can ameliorate the lipopolysaccharides (LPS)-induced ALI due to the changes of its biodistribution. First, the liposomes entrapping DIP were prepared by film hydration for treating ARDS. Subsequently, the characterizations including entrapment efficiency, size, span and micrograph of DIP liposomes were measured. The concentration change of DIP in tissues and plasma of mice after intravenous administration of DIP injection and DIP liposomes was determined by RP-HPLC and calculated to lung targeting parameters. To prove the therapeutic efficiency, the effects of DIP liposomes on LPS-induced ALI were studied compared with DIP injection. The results showed DIP liposomes have the relative high entrapment efficiency and satisfying particle size. Compared with DIP injection, the liposomes increased the accumulation of DIP in the lung on a vast scale. Furthermore, DIP liposomes alleviated the ALI induced by LPS significantly. All of the results suggested that DIP liposomes have the potential efficacy in treating ALI/ARDS due to their obvious lung targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号