首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutathione (GSH) and metallothioneins (MT) are believed to play important roles in protecting cells against high copper (Cu) concentrations. Little is known, however, about their specific intracellular interactions and the coordination of protective functions. We investigated contributions of GSH and MT to protection against Cu toxicity in fibroblasts derived from wild-type (MT+/+) and knockout (MT-/-) mice that were challenged with cupric nitrilotriacetate (Cu-NTA). Endogenous levels of GSH and MT were manipulated using an inhibitor of gamma-glutamylcysteine synthetase, buthionine sulfoximine (BSO, 5 microM), as GSH depletor and ZnCl(2) (100 microM) as inducer of MT expression. BSO pretreatment markedly decreased cellular GSH levels in MT+/+ and MT-/- cells, by 65% and 70%, respectively, which resulted in Cu cytotoxicity accompanied by its elevated redox-cycling activity and enhanced Cu-induced membrane phospholipid peroxidation. BSO-pretreated MT-/- cells were markedly more sensitive to Cu despite the fact that the residual levels of GSH were similar in both BSO-pretreated MT+/+ and MT-/- cells. Zn pretreatment resulted in more than 10-fold induction of MT in MT+/+ cells but not in MT-/- cells. Accordingly, Zn pretreatment afforded significant protection of MT+/+ cells against Cu cytotoxicity, likely associated with MT-dependent suppression of Cu redox-cycling activity and phospholipid peroxidation, but it exerted no protection in MT-/- cells (as compared to naive cells). To determine whether MT functions specifically in Cu regulation or rather acts as a nonspecific Cu-binding cysteine-rich nucleophile, experiments were performed using MT+/+ and MT-/- cells pretreated with both BSO and Zn. BSO pretreatment did not affect Zn-induced MT expression in MT+/+ cells. As compared with BSO pretreatment alone, exposure to Cu of MT+/+ cells after Zn/BSO pretreatment resulted in the following: (i) a significantly higher viability; (ii) attenuated Cu-dependent redox-cycling activity; and (iii) a lower level of phospholipid peroxidation. In BSO/Zn-pretreated MT-/- cells, the redox-cycling activity of Cu and the level of phospholipid peroxidation remained remarkably higher than in naive cells and were not significantly different from those in cells pretreated with BSO alone. Cu-induced toxicity was remarkably higher in BSO/Zn-pretreated MT-/- cells than in naive or Zn-pretreated cells, although slightly lower than in the MT-/- cells pretreated with BSO alone.  相似文献   

2.
Metallothionein (MT) often reduces the adverse effects of cadmium (Cd), but how it may alter Cd-induced apoptosis is unclear. The goal of this study was to define the role of MT in Cd-induced apoptosis using cell lines with widely varying sensitivity to Cd. Effects of Cd on growth of human hepatocellular carcinoma cell lines (HepG2 and PLC/PRF/5) were investigated and compared with Chang cells. These cells were cultured with 0, 5, 10, 20, 40, 80, and 120 microM of Cd for 3, 6, 12, and 24 h. Significant cytolethality was observed in HepG2 and PLC/PRF/5 cells in a time- and concentration-dependent manner, with LC(50) values of 24 microM and 13 microM, respectively. However, Chang cells were much less sensitive to Cd-induced cytotoxicity (LC(50), 64 microM). Apoptotic cell death occurring at cytolethal concentrations was demonstrated in all cell lines by DNA fragmentation on agarose gel electrophoresis or by ELISA. When MT was measured, there was a highly significant negative linear correlation between the basal cellular MT concentration or Cd-induced MT and the rate of apoptosis induced by Cd in these cell lines. Treating HepG2 cells with zinc (Zn) made the relatively sensitive HepG2 cell line resistant to Cd-induced apoptosis, likely due to Zn-induced MT. In fact, there was also a significant negative linear correlation between the amount of Zn-induced MT in HepG2 cells and the rate of Cd-induced apoptosis. These findings revealed that basal or induced MT perturbs Cd-induced apoptotic cell death in various cell lines, and a strong negative correlation exists between cellular MT content and the rate of apoptosis induced by Cd.  相似文献   

3.
Recently, our laboratory demonstrated that metallothionein-1 (MT-1) is degraded faster than metallothionein-2 (MT-2) in liver of Zn-treated adult rats; however, it is not clear whether this phenomenon is unique to Zn treatment or the age of the animal. Furthermore, many investigators maintain that the degradation of MT is regulated by its metal composition. The objective of this study was twofold: (1) to determine if MT-1 is more susceptible than MT-2 to proteolytic breakdown regardless of age or chemical pretreatment and (2) to examine the hypothesis that the amount and type of metals bound to MT influences its resistance to degradation. Pulse-labeling experiments were conducted to determine the half-lives of MT-1 and MT-2 in liver of adult rats (75-day-old), immature rats (1-day-old), and mature rats treated with single dosages of Zn (1 mmol/kg, sc), Cd (10 mumol/kg, sc), or ethanol (109 mmol/kg, po). Atomic absorption spectrometry was utilized to measure the Zn, Cu, and Cd contents of MT-1 and MT-2 obtained in selected experimental groups. MT-1 had a shorter half-life than MT-2 in Zn-treated adults (21 vs 33 hr) and in nontreated immature rats (49 vs 73 hr). In contrast, the half-life values of MT-1 and MT-2 were identical in nontreated adults (4 hr) and ethanol-treated adults (9 hr) and nearly identical in Cd-treated adults (58 and 61 hr, respectively). Both isoforms obtained from immature rats and adults treated with Zn or ethanol contained approximately 6.0 g atoms Zn/mol MT, trace levels of Cu, and nondetectable quantities of Cd. In Cd-treated rats, both isoforms contained approximately equal amounts of Zn and Cd (3.2 g atoms metal/mol MT) and trace levels of Cu. These results indicate that MT-1 is either as susceptible or more susceptible than MT-2 to intracellular degradation depending on age or chemical pretreatment. Furthermore, factors unrelated to the metal composition of MT appear to regulate the degradation of MT-1 and MT-2.  相似文献   

4.
Metallothionein (MT) is known to be involved in various physiological roles and diseases. However, a standard method for MT measurement has not been established until recently. Therefore, we have developed an easy and specific enzyme-linked immunosorbent assays (ELISA) to determine MT-1 and MT-2. In order to evaluate the method we developed, MT-1/2 in liver, kidney and brain was determined in wild type (WT), MT-1/2 knockout (KO) and MT-3 KO mice, with and without Cd treatment. MT 1/2 in urine was determined in genetically disordered LEC rats (an animal model of Wilson disease). MT-1/2 concentrations in the liver, kidney and brain in MT-1/2 KO mice were significantly lower compared to those of WT and MT-3 KO mice. MT-1/2 concentrations in the livers of WT mice significantly increased with Cd administration, but not in MT-1/2 KO mice. Similar results were observed by immunohistochemical staining. To confirm the molecular weight (MW) of MT detected in organs by the ELISA, analysis with a Sephadex G-75 was performed. Two peaks of MT-1/2 (MW small and large) were detected in WT and MT-3 KO mice. The small MT peak was mostly depleted in MT 1/2-KO mice, while a large MT peak remained. A significant increase in MT-1/2 concentration was detected in the urine of LEC rats with age and especially at the hepatitis stage. In conclusion, MT-1/2 ELISA and immunohistochemical staining was highly correlated with MT-1/2 determination in experimental animal specimens and could be a robust analytical tool for physiological and toxicological studies.  相似文献   

5.
The human prostate gland has low basal expression of the metallothionein-1 and -2 proteins. In prostate cancer, MT-1/2 protein expression is variable and correlates directly with the increasing Gleason score of the tumor. The goal of the present study was to determine if the RWPE-1 cell line is a good model to elucidate the mechanisms underlying the alterations in MT-1/2 expression that occur during the development of prostate cancer. It was shown that the RWPE-1 cell line and in situ prostate tissue have identical expression profiles of MT-1 and MT-2 isoform-specific mRNAs (MT-1E, MT-1X and MT-2A) and similar levels of MT-1/2 protein. It was also shown that the RWPE-1 cells respond to Zn(+2) and Cd(+2) exposure by induction of the basally expressed MT mRNAs and the accumulation of high levels MT-1/2 protein (in excess of 10% of total protein). It was also shown that additional MT-1 mRNAs were expressed when the cells were exposed to either metal; MT-1A, MT-1F, MT-G and MT-1H for Cd(+2)-exposed cells; and, MT-1F, MT-G and MT-1H for Zn(+2)-exposed cells. The results suggest that RWPE-1 cells may be a valuable system to define the interplay between Zn(+2) concentration, Cd(+2) exposure and MT in normal and malignant prostate epithelial cells.  相似文献   

6.
The ability of zinc (Zn) salts to induce the synthesis of metallothionein (MT) in liver, kidney and pancreas of rats pretreated with cadmium (Cd) salts was investigated. Twenty-four hours after either CdCl2 (2.0 mg Cd/kg, s.c.) or saline pretreatment, rats were injected with saline, CdCl2 (2.0 mg Cd/kg, s.c.) or ZnSO4 (20 mg Zn/kg, s.c.) and the concentrations of MT and MT-1 mRNA in tissues subsequently measured. After a single injection of Cd salts, concentrations of MT and MT-1 mRNA were significantly increased in liver as compared to control. With two injections of Cd, the accumulation of MT in liver was approximately twice the levels of MT following a single injection of Cd. In kidney, MT and MT-1 mRNA expression were significantly increased only after two injections of Cd and in the pancreas, Cd injections did not alter either MT content or MT-1 mRNA expression. Treatment with Zn salts increased MT concentrations in both liver and pancreas. However, the pancreas was the most responsive to injections of Zn salts as compared to the liver in terms of increases in both protein concentration and MT-1 mRNA expression. When Zn injection was preceded by a Cd injection, induction as measured by MT-1 mRNA and MT concentrations were approximately additive in liver. In kidney, although Cd or Zn treatment separately had no effect on MT or MT-1 mRNA content, injection of Cd followed by Zn resulted in significantly increased levels of renal MT and MT-1 mRNA. Fractionation of liver cytosols on a Sephadex G-75 column revealed that in animals receiving two injections of Cd, virtually all the Cd was associated with MT whereas Zn was distributed between both high molecular weight (HMW) proteins and MT. In animals receiving both Cd and Zn injections, cytosolic Cd was still bound predominantly to the MT fraction, while the proportion of cytosolic Zn associated with MT increased. The results of this study suggest that, treatment with Cd salts followed by Zn salt injection can induce further synthesis of MT in liver, kidney and pancreas with subsequent binding of both Zn and Cd to the intracellular MT.  相似文献   

7.
Metallothioneins (MTs) are proteins known to be involved in defense mechanisms against heavy metals and reactive oxygen species. In human, more than ten MT isoform genes have been identified, in contrast to much fewer isoforms in other mammalian species. The increased number of isoforms in human may have some biological significance; for example, isoforms may have been functionally differentiated to deal with various environmental factors in the evolutional process. However, we know little about the functions of the individual MT isoforms. To clarify functional differences between human MT isoforms, we developed a method to determine individual isoform mRNA levels using real-time polymerase chain reaction (PCR), and studied responses of the isoform genes against heavy metals (Zn, Cd, Cu) and As in HeLa cells. These metals induced all MT isoforms except for MT-1A by Cu, though their induced levels were different. Furthermore, these metals preferentially induced isoforms MT-2A and MT-1X suggesting that these isoforms may be important in protecting from their cytotoxicity.  相似文献   

8.
Cadmium (Cd) is a human carcinogen present in tobacco smoke and contaminated industrial soils. Metallothioneins (MTs) are intracellular proteins involved in protecting against Cd. The toxic effects of Cd can be modified by compounds able to modulate MTs synthesis. Melatonin has oncostatic properties and has also been shown to counteract the toxic effects of Cd. In this study we examine the possible role of melatonin in Cd-induced expression of several MT isoforms (MT-2A, MT-1X, MT-1F and MT-1E) in three human tumor cell lines (MCF-7, MDA-MB-231 and HeLa). We found that, in all cell types, melatonin increases Cd-induced expression of MT-2A, which is considered to protect against Cd toxicity. As regards MT-1 subtypes, which have been related with cell invasiveness and high histological grade tumors, melatonin caused Cd-induced expression in both breast cancer cell lines to decrease. These effects point towards melatonin's possible role as a preventive agent for carcinogenesis dependent on Cd contamination.  相似文献   

9.
Metallothionein (MT), a low-molecular-weight, cysteine-rich, metal-binding protein, has been implicated in the detoxification of Cd. However, whether MT protects against the cellular toxicity of other metals has not been examined thoroughly. This study was therefore designed to determine the effects of Zn-induced MT on the toxicity of seven metals in rat primary hepatocyte cultures. Hepatocytes were grown in monolayer culture for 22 hr and subsequently treated with ZnCl2 (100 microM) for 24 hr which produced a 15-fold increase in MT concentration. Following Zn pretreatment, hepatocytes were exposed to various concentrations of Ag, Co, Cu, Hg, Ni, Pb, or Zn for 24 hr. Cytotoxicity was assessed by enzyme leakage and loss of intracellular K+. The toxicity of all seven metals was significantly less in the Zn-pretreated cells. Zn pretreatment had no appreciable effect on the hepatocellular uptake (1-24 hr) of 110Ag or 203Hg, but markedly altered their subcellular distribution, with metals accumulating more in the cytosol and less in the nuclear, mitochondrial, and microsomal fractions. In the cytosol of control cells, the metals were bound mainly to high-molecular-weight proteins whereas in the Zn-pretreated cells, the metals were mainly associated with MT. In summary, Zn-induced MT in rat primary hepatocyte cultures protects against Ag-, Co-, Cu-, Hg-, Ni-, Pb-, and Zn-induced cytotoxicity. This protection appears to be due to the binding of metals to MT with a concomitant reduction of metal content in critical organelles and proteins.  相似文献   

10.
11.
The comparative renal toxicity of rats after injection of cadmium (Cd) and zinc (Zn)-metallothioneins (MTs) with different Cd/Zn ratios at the same dose of 200 micrograms MT-bound Cd/kg was studied. From determination of the urinary excretion of protein, aspartate aminotransferase (AST) and glucose, which are indices of Cd-induced renal damage, the extent of the renal toxicity of the MTs used here was in the order (1 Cd/0Zn)-MT = (2Cd/1Zn)-MT greater than (1Cd/2Zn)-MT greater than (1Cd/6Zn)-MT. The characterization of Cd, Zn and Cu in the urine after injection of MTs was examined using a Sephadex G-75 column. (1Cd/0Zn)-MT injection showed that Cd was present mainly in lower-molecular-weight fractions, with only small amounts of Cd in the MT fraction. Upon injection of other MTs, Cd was present mainly in the MT fraction and increased with decreasing Cd/Zn ratio. Zn was present mainly in lower-molecular-weight fractions and Cu mainly in the MT fraction, indicating the replacement of MT-bound Zn by Cu. The cumulative urinary excretion of Cd during 12 days after injection of MTs decreased with increasing Cd/Zn ratio. The Cd content of the kidney and liver increased with increasing Cd/Zn ratio. The results of this study indicate that in rats injected with MTs with different Cd/Zn ratios, the renal uptake of Cd increases with increasing Cd/Zn ratio, resulting in more severe renal damage.  相似文献   

12.
13.
14.
The literature on metallothioneins (MT) and metallothionein-like proteins (MTLP) in aquatic invertebrates is large and increasing, and yet inconsistencies and confusion remain, not least over the physiological role of MT and their use as biomarkers in environmental monitoring programmes. We have collated published information on MT in three important groups of aquatic invertebrates-the molluscs, crustaceans and annelid worms, and attempted to seek explanations for some of the apparent inconsistencies present in the dataset. MTs can be induced by the essential metals Cu and Zn and the non-essential metals Cd, Ag and Hg in both vertebrates and invertebrates, but their induction is variable. Such variation is intraspecific and interspecific, and is down to a variety of reasons environmental and physiological explored here. Against this background of variability MTs do appear to play roles both in the routine metabolic handling of essential Cu and Zn, but also in the detoxification of excess amounts intracellularly of these metals and of non-essential Cd, Ag and Hg. Different isoforms of MT probably play different physiological roles, and the dependence on MT in detoxification processes varies environmentally and between zoological groups. MTs can be used as biomarkers if used wisely in well-designed environmental monitoring programmes.  相似文献   

15.
Our investigations undertook to examine whether copper (Cu) and zinc (Zn) bound to renal metallothionein (MT) along with cadmium (Cd) in Cd-loaded rats can be mobilized during pregnancy and lactation. Rats of the Wistar strain were injected with Cd. Synthesis of MT containing Cd, Cu and Zn was induced in the kidneys. Concentrations of Cd and essential elements in blood plasma and organs (liver and kidneys) were compared among non-pregnant and pregnant, and Cd-loaded and non-loaded rats at middle and late gestational days and after delivery. Cu bound to renal MT was decreased with gestational age, while Zn was slightly increased. The results indicate that Cu was mobilized and utilized even when the metal was bound to MT in the kidneys of dams. On the other hand, Zn bound to renal MT in Cd-loaded rats was retained and not mobilized during pregnancy. The elution profile of renal MT on an SW column was changed from a typical renal to a mixed profile of renal and hepatic MTs as a result of decreased Cu content in MT. Plasma essential elements changed similarly with gestational age in both concentrations and distributions in non-loaded and Cd-loaded rats. These results indicate that the 3 metals bound to renal MT are dealt with differently during gestation and lactation, and Cu but not Zn is transferred to the fetus, independently of the Cd status of the dam.  相似文献   

16.
An experimental study of the role of metallothioneins (MTs) in Cd and Zn depuration processes in the freshwater bivalve Corbicula fluminea was conducted after in situ exposure on the river Lot (France). Specimens of adult C. fluminea were first transplanted from a lacustrine reference site to a polymetallic polluted station (Bouillac, (B)) for a 42-days' exposure period from September to November 1996. They were then depurated after transfer to the laboratory, and were sub-sampled periodically until May 1997. During the first phase, MT concentrations measured with the Mercury-Saturation Assay were induced for a factor of 3.5 compared with time 0, whereas metal uptake showed accumulation factors of 17 and 4 for Cd and Zn, respectively. During the depuration phase, Cd and Zn concentrations decreased by 18 and 70%, respectively, giving estimated biological half-lives of 500 and 40 days. During the same period, MT concentrations decreased by 37% after transfer under unpolluted conditions, especially between 0 and 3 days, suggesting that MTs play a predominant role in Cd depuration. The quantity of Cd sequestered by the MT fraction, after size-exclusion liquid chromatography, represents on average 40% of the total Cd bioaccumulated in the soft body of the molluscs, compared with only 4-9% for total accumulated Zn. This essential metal was principally bound to low molecular weight proteins, which represented 20% of total Zn. Furthermore, it was observed that MTs had a key role in Cd remanence in the bivalves, and it was also reported that other proteins or small peptides were involved in the depuration of Zn.  相似文献   

17.
18.
The aim of this study was to elucidate the seasonal and spatial regularity of the properties of metallothioneins (MTs) from the liver and kidney of the frog Rana ridibunda in rural (R) and urban (U) sites in Western Ukraine. This allowed examination of their possibility use in biomonitoring of environmental quality. The positive correlation for Zn and negative correlation for Cu were reflected between their content in the liver and MTs. The content of MTs was higher in summer compared to other seasons and also at the U site compare to the R site. MTs had been comprised of two chromatographic forms (MT-1 and MT-2/MT-2a), with lesser and variable MT-2/2a in frogs from the U site, particularly in the kidney. MTs accumulated about 75% of Cd in the liver. In summary, the ability MTs to elevate content as a stress response, together with the sensitivity of MT-2, may be explored to understand the health status of the frog in each season, reflecting the higher overall anthropogenic impact at the U site.  相似文献   

19.
20.
Cadmium concentrations, (Cd,Zn)-metallothionein (MT) concentrations, MT synthesis and the relative amounts of cadmium bound to (Cd,Zn)-MTs were determined in gills, liver and kidney of common carp Cyprinus carpio exposed to 0, 0.5 microM (0.06 mg.l(-1)), 2.5 microM (0.28 mg.l(-1)) and 7 microM (0.79 mg.l(-1)) Cd for up to 29 days. Cadmium accumulation was in the order kidney > liver > gills. Control levels of hepatic (Cd,Zn)-MT were four times higher compared to those of gills and kidney. No increases in (Cd,Zn)-MT concentrations were observed in liver during the exposure period. In comparison with control carp, (Cd,Zn)-MT concentrations increased up to 4.5 times in kidney and two times in gills. In both these organs, (Cd,Zn)-MT concentrations were linearly related with cadmium tissue levels and with the de novo synthesis of MTs. Hepatic cadmium was almost completely bound to (Cd,Zn)-MT, while percentages of non-MT-bound cadmium were at least 40% in gills and 25% in kidney. This corresponded with a total saturation of (Cd,Zn)-MT by cadmium in kidney and a saturation of approximately 50 and 60% in gills and liver, respectively. The final order of non-MT-bound cadmium was kidney > gills > liver. Our results indicate that cadmium exposure causes toxic effects, which cannot be correlated with the accumulated levels of the metal in tissues. Although cadmium clearly leads to the de novo synthesis of MT and higher (Cd,Zn)-MT concentrations, the role of this protein in the detoxification process is clearly organ-specific and its synthesis does not keep track with cadmium accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号