首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Compared with traditional drug solutions or suspensions, polymeric microparticles represent a valuable means to achieve controlled and prolonged drug delivery into joints, but still suffer from the drawback of limited retention duration in the articular cavity. In this study, our aim was to prepare and characterize magnetic biodegradable microparticles containing dexamethasone acetate (DXM) for intra-articular administration. The superparamagnetic properties, which result from the encapsulation of superparamagnetic iron oxide nanoparticles (SPIONs), allow for microparticle retention with an external magnetic field, thus possibly reducing their clearance from the joint. Two molecular weights of poly(lactic-co-glycolic acid) (PLGA) were used, 12 and 19 kDa. The prepared batches were similar in size (around 10 μm), inner morphology, surface morphology, charge (neutral) and superparamagnetic behaviour. The SPION distribution in the microparticles assessed by TEM indicates a homogeneous distribution and the absence of aggregation, an important factor for preserving superparamagnetic properties. DXM release profiles were shown to be quite similar in vitro (ca. 6 days) and in vivo, using a mouse dorsal air pouch model (ca. 5 days).  相似文献   

2.
Gastroretentive drug delivery system is a promising option for the treatment of Helicobacter pylori infection, which can prolong gastric residence time and supply high drug concentration in the stomach. In the present study, a low density system of metronidazole-loaded porous Eudragit® RS microparticle with high drug loading capacity (>25%) was fabricated via electrospray method. The porous structure and size distribution of microparticles were affected by polymer concentration and flow rate of solution. FTIR and XRD analyses indicated that drug has been entrapped into the porous microparticles. In addition, sustained release profiles and slight cytotoxicity in vitro were detected. Gamma scintigraphy study in vivo demonstrated that 131I-labeled microparticles retained in stomach for over 8 h, and about 65.50% radioactive counts were finally detected in the region of interest. The biodistribution study confirmed that hotspot of radioactivity was remaining in the stomach. Furthermore, metronidazole-loaded porous microparticles can eradicate H. pylori completely with lower dose and administration frequency of antibiotic compared with pure drug, which were also more helpful for the healing of mucosal damages. These results suggest that prepared porous microparticle has the potential to provide better treatment for H. pylori infection.  相似文献   

3.
The present work describes the formulation of Eudragit® L30 D-55 microparticles (MP) alone or with mucoadhesive agents, alginate or Carbopol®, as an approach for the development of an oral cholera vaccine. In the first part, a spray drying technique was optimized for microparticle elaboration, obtaining a microparticle size ranging from 7 to 9 μm with high encapsulation efficiencies. Moreover, gastro resistant properties and Vibrio cholerae (VC) antigenicity were maintained, but for Eudragit®-Carbopol® microparticles which showed low antigenicity values, ≈25%. Next, a stability study was performed following ICH Q1 A (R2) guidelines, i.e. 25 °C-60% relative humidity (RH) for 12 months, and 30 °C-65% RH and 40 °C-75% RH for 6 months. Upon storage, microparticle size changed slightly, 1 μm for Eudragit®-alginate MPs and 0.36 μm for Eudragit®MP. However, gastro resistance and antigenicity values were kept in an acceptance range. In the third stage of this work, in vivo experiments were performed. The immune response evoked was measured by means of vibriocidal titer quantification, observing that Eudragit®-alginate MPs were able to induce stronger immune responses, comparable to the free VC. Therefore, microencapsulation of VC by spray drying could be proposed as an approach to a cold chain free and effective oral cholera vaccine.  相似文献   

4.
The objective of this study was to apply a one-step melt granulation method to develop an extended-release formulation of lovastatin (LOV-ER). We prepared a formulation using PEG 6000 as binder agent in a laboratory scale high-shear mixer. In vitro dissolution studies showed that the release of the drug from the new formulation followed a zero-order kinetic with no differences in the release profile with either the pH media or the agitation rate. The pharmacokinetic of lovastatin and its metabolite lovastatin acid was evaluated after the administration of the new formulation to Beagle dogs in fasted conditions and after a high-fat meal, and compared to the marketed formulation Altoprev®. After the administration of LOV-ER, extended plasma profiles of lovastatin and its active metabolite were achieved in both fasted conditions and after the high-fat meal. Plasma levels of lovastatin and lovastatin acid were always higher when the LOV-ER formulation was administered with the high-fat meal. A high variability in plasma levels and pharmacokinetic parameters was obtained, being this variability higher when the formulation was administered under fasting conditions. Our results suggest that there is an increase in lovastatin bioavailability when the formulation is administered after the high-fat meal. When we compare LOV-ER and Altoprev®, both administered after the high-fat meal, we found significant differences (p < 0.05) in Cmax of lovastatin and in AUC0-∞ and MRT of lovastatin acid. No differences were detected between both formulations in fasting conditions. In this regard, the high-fat meal seems to increase the absorption extent of lovastatin from LOV-ER formulation and to delay the absorption rate of the drug from Altoprev®. In conclusion, we developed a lovastatin formulation that provided extended plasma levels that confirm that one-step melt granulation in high-shear mixer could be an easy and cost-effective technique for extended-release formulation development.  相似文献   

5.
Oridonin (ORI), a diterpenoid compound with promising antitumor activity, was proved to possess potent antileukemia efficacies in vitro and in vivo recently. However, the development and application of ORI was limited by its poor solubility and rapid plasma clearance. The purpose of this study was to solve these problems. PEGylated oridonin linked with succinic acid (SA) as spacer moiety (PEG-SA-ORI conjugate) was synthesized. mPEG amines with four specifications of molecular weight (MW) were utilized. All polymeric conjugates showed satisfactory aqueous solubility and in vitro studies implied that the drug solubility and release features of conjugates were relevant to PEGs. The drug solubility increased more when the MW of PEG was lower, while more significant sustained-release effect was shown with higher PEG MW. Moreover, the release behaviors of conjugates showed a pH-sensitive property. In vivo pharmacokinetic studies demonstrated that the elimination half-life was prolonged in comparison with ORI solution. PEGylation could be a promising method to obtain better efficacy in the field of drug delivery system.  相似文献   

6.
Gold standard for in vitro toxicity tests and drug screenings is primary human hepatocytes (hHeps). Because of their limited availability efforts have been made to provide alternatives, e.g., monocyte-derived NeoHepatocytes. In the past years it has been critically discussed if gaining hepatocyte features is associated with trans-differentiation of monocytes or their activation towards a macrophage phenotype.Generating NeoHepatocytes in the presence of six different human AB sera, fetal calf serum (FCS) or autologous serum showed that yield and quality of NeoHepatocytes is inversely correlated to macrophage activation. Using autologous serum constantly the highest amount of cells with the best metabolic capacity was obtained. Focus of this study was to further analyze bio-transformation capacity of the optimized NeoHepatocytes for use as in vitro toxicity test-system. Treatment of the optimized NeoHepatocytes with two different pro-teratogenic substances with corresponding metabolites and eight known hepatotoxins showed comparable toxicity to hHeps. Bio-transformation rates, assessed by testosterone metabolism, were comparable in both cell types.Our data reveal that use of autologous serum reduced macrophage activation which improved yield and function of NeoHepatocytes resulting in bio-transformation and toxicity profiles comparable to hHeps. Thus, their easy accessibility makes them an ideal candidate for in vitro toxicity studies.  相似文献   

7.
Hydrochloric thiothixene (HT) is an antipsychotic drug used in the treatment of various psychoses including schizophrenia, mania, polar disorder, and in behavior disturbances. However, because the psychotics often could not control their behaviors, the independent administration of antipsychotic drug based on medical order was difficult. The omissions of the administration often brought an unsatisfactory therapeutic efficacy. A novel injectable long-term control-released in situ gel of HT for the treatment of schizophrenia was developed based on biodegradable material polylactic acid (PLA). The optimum formulation of the injectable PLA-based HT in situ gel containing 15% (w/w) HT and 45% (w/w) PLA with benzyl benzoate was used as a gelling solvent. The results of the in vitro and in vivo studies showed that this in situ gel had a long-term period of drug release for several weeks and a good histocompatibility without any remarkable inflammatory reactions.  相似文献   

8.
The purpose of this study was the in vitro and in vivo evaluation of the masking efficiency of hot melt extruded paracetamol (PMOL) formulations. Extruded granules containing high PMOL loadings in Eudragit EPO® (EPO) or Kollidon® VA64 (VA64) were prepared by hot-melt extrusion (HME). The taste masking effect of the processed formulation was evaluated in vivo by a panel of six healthy human volunteers. In addition, in vitro evaluation was carried out by an Astree e-tongue equipped with seven sensors. Taste sensing technology demonstrated taste improvement for both polymers by correlating the data obtained for the placebo polymers and the pure APIs alone. The best masking effect was observed for VA64 at 30% PMOL loading. The e-tongue results were in good agreement with the in vivo evaluation. In vitro dissolution of the extruded granules showed rapid PMOL releases.  相似文献   

9.
Pharmacokinetics of ethyl methanesulfonate (EMS) were characterized in mice, rats and in cynomolgus monkeys with unlabelled and 14C-radiolabelled EMS by either quantification of unchanged EMS or the N-ethyl-valine haemoglobin (Hb) adduct. EMS was well absorbed and exhibited close to 100% oral bioavailability. EMS showed some species differences in systemic clearance (intermediate in mice, low in rats and monkeys) representing only 1–4% of the cardiac output. The volume of distribution (0.5–0.8 L/kg) was constant across species and corresponded to extracellular water. As a result of the species differences in clearance, the half-life ranged from 10 min in mouse (at low dose) to 5 h in monkey. The systemic exposure of free EMS and the levels of its Hb adduct increased nearly dose proportionately from 1 to 5 and 0.5 to 80 mg/kg, respectively. The persistence of the N-ethyl-valine Hb adduct was much longer than EMS itself, consistent with the long life span of haemoglobin. No species differences were evident for the binding of EMS to Hb in whole blood ex vivo as determined by the second order rate constants.  相似文献   

10.
In this study, we compared the in vitro and in vivo neuronal nicotinic acetylcholine receptor (nAChR) properties of 1,2,3,3a,4,8b-hexahydro-2-benzyl-6-N,N-dimethylamino-1-methylindeno[1,2,-b]pyrrole (HDMP, 4) to that of negative allosteric modulator (NAM), PCP. Patch-clamp experiments showed that HDMP exhibited an inhibitory functional activity at α7 nAChRs with an IC50 of 0.07 μM, and was 357- and 414-fold less potent at α4β2 and α3β4 nAChRs, with IC50s of 25.1 and 29.0 μM, respectively. Control patch-clamp experiments showed that PCP inhibited α7, α4β2 and α3β4 nAChRs with IC50s of to 1.3, 29.0 and 6.4 μM, respectively. Further, HDMP did not exhibit any appreciable binding affinity to either α7 or α4β2 nAChRs, suggesting its action via a non-competitive mechanism at these neuronal nAChR subtypes. The in vivo study showed that HDMP was a potent antagonist of nicotine-induced analgesia in the tail-flick (AD50 = 0.008 mg/kg), but not in the hot-plate test. All together, our in vitro and in vivo data suggest that HDMP is a novel NAM of neuronal nAChRs with potent inhibitory activity at α7 nAChR subtype at concentrations ≤1 μM that are not effective for α4β2 and α3β4 nAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号