首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are a variety of both natural and synthetic polymeric systems that have been investigated for the controlled release of proteins. Many of the procedures employed to incorporate proteins into a polymeric matrix can be harsh and often cause denaturation of the active agent. Alginate, a naturally occurring biopolymer extracted from brown algae (kelp), has several unique properties that have enabled it to be used as a matrix for the entrapment and/or delivery of a variety of biological agents. Alginate polymers are a family of linear unbranched polysaccharides which contain varying amounts of 1,4′-linked β-d-mannuronic acid and α-l-guluronic acid residues. The residues may vary widely in composition and sequence and are arranged in a pattern of blocks along the chain. Alginate can be ionically crosslinked by the addition of divalent cations in aqueous solution. The relatively mild gelation process has enabled not only proteins, but cells and DNA to be incorporated into alginate matrices with retention of full biological activity. Furthermore, by selection of the type of alginate and coating agent, the pore size, degradation rate, and ultimately release kinetics can be controlled. Gels of different morphologies can be prepared including large block matrices, large beads (> 1 mm in diameter) and microbeads (< 0.2 mm in diameter). In situ gelling systems have also been made by the application of alginate to the cornea, or on the surfaces of wounds. Alginate is a bioadhesive polymer which can be advantageous for the site specific delivery to mucosal tissues. All of these properties, in addition to the nonimmunogenicity of alginate, have led to an increased use of this polymer as a protein delivery system. This review will discuss the chemistry of alginate, its gelation mechanisms, and the physical properties of alginate gels. Emphasis will be placed on applications in which biomolecules have been incorporated into and released from alginate systems.  相似文献   

2.
The relationship of high and low molecular weight mannuronic acid (M)- and guluronic acid (G)-rich alginate nanoparticles as oral insulin carrier was elucidated. Nanoparticles were prepared through ionotropic gelation using Ca2 +, and then in vitro physicochemical attributes and in vivo antidiabetic characteristics were examined. The alginate nanoparticles had insulin release retarded when the matrices had high alginate-to-insulin ratio or strong alginate–insulin interaction via O-H moiety. High molecular weight M-rich alginate nanoparticles were characterized by assemblies of long polymer chains that enabled insulin encapsulation with weaker polymer–drug interaction than nanoparticles prepared from other alginate grades. They were able to encapsulate and yet release and have insulin absorbed into systemic circulation, thereby lowering rat blood glucose. High molecular weight G- and low molecular weight M-rich alginate nanoparticles showed remarkable polymer–insulin interaction. This retarded the drug release and negated its absorption. Blood glucose lowering was, however, demonstrated in vivo with insulin-free matrices of these nanoparticles because of the strong alginate–glucose binding that led to intestinal glucose retention. Alginate nanoparticles can be used as oral insulin carrier or glucose binder in the treatment of diabetes as a function of its chemical composition. High molecular weight M-rich alginate nanoparticles are a suitable vehicle for future development into oral insulin carrier. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:4353–4363,2013  相似文献   

3.
During last decades, diphtheria has remained as a serious disease that still outbreaks and can occur worldwide. Recently, new vaccine delivery systems have been developed by using the biodegradable and biocompatible polymers such as alginate. Alginate nanoparticles as a carrier with adjuvant and prolong release properties that enhance the immunogenicity of vaccines. In this study diphtheria toxoid loaded nanoparticles were prepared by ionic gelation technique and characterized with respect to size, zeta potential, morphology, encapsulation efficiency, release profile, and immunogenicity. Appropriate parameters (calcium chloride and sodium alginate concentration, homogenization rate and homogenization time) redounded to the formation of suitable nanoparticles with a mean diameter of 70±0.5 nm. The loading studies of the nanoparticles resulted in high loading capacities (>90%) and subsequent release studies showed prolong profile. The stability and antigenicity of toxoid were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and ouchterlony test and proved that the encapsulation process did not affect the antigenic integrity and activity. Guinea pigs immunized with the diphtheria toxoid-loaded alginate nanoparticles showed highest humoral immune response than conventional vaccine. It is concluded that, with regard to the desirable properties of nanoparticles and high immunogenicity, alginate nanoparticles could be considered as a new promising vaccine delivery and adjuvant system.  相似文献   

4.
Alginate-based hydrogels have several unique properties that have enabled them to be used as a matrix for the entrapment of a variety of enzymes, proteins and cells for applications in bioprocessing, drug delivery and chemical sensing. However, control over release rates or, in some cases, stable encapsulation remains a difficult goal, especially for small particles with high surface-area-to-volume ratios. In this work, the potential to limit diffusion of macromolecules embedded in alginate spheres with nanofilm coatings was assessed. Alginate microspheres were fabricated using an emulsification process with high surfactant concentration to form beads in the size range of 2-10 microm. Using calcium chloride for ionotropic gelation, dextran was encapsulated in the gel phase by mixing with the alginate in solution. The exterior surface was then modified with polyelectrolyte coatings using the layer-by-layer self assembly technique. Leaching studies to assess retention of dextran with varying molecular weights confirmed that the application of multi-layer thin films to the alginate microspheres was effective in reducing leaching rate and total loss of the encapsulated material from the microspheres. For the best case, the rate of release for dextran of 2,000,000 Dalton molecular weight decreased from 1% h(-1) in bare microspheres to 0.1% h(-1) in polyelectrolyte-coated microspheres. The effectiveness of nanofilms reducing loss of the encapsulated macromolecules was found to vary between different polycation materials used. These studies support the feasibility of using these microsystems for development of long-term stable encapsulated systems, such as implantable biosensors.  相似文献   

5.
海藻酸钠骨架材料中药物释放的影响因素   总被引:10,自引:1,他引:10  
目的以海藻酸钠为亲水骨架材料,考察药物从海藻酸钠骨架片中释放的体外影响因素。方法以茶碱为模型药物,采用直接压片法制备了茶碱海藻酸钠亲水骨架片,通过对骨架片膨胀性、吸水性以及溶蚀性的考察,研究了影响药物从海藻酸钠骨架材料中释放的体外因素。结果茶碱海藻酸钠骨架片的释药速率和释药机理与骨架片中海藻酸钠粘度、释放介质pH值、离子强度以及转速均有关。结论海藻酸钠能有效地控制骨架片中药物的释放,是一种优良的亲水骨架材料。  相似文献   

6.
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.  相似文献   

7.
The poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid pre-corneal elimination of the drug may be overcome by the use of in situ gel-forming systems that are instilled as drops into the eye and then undergo a sol-gel transition in the cul-de-sac. The present work describes the formulation and evaluation of an ophthalmic delivery system of an antibacterial agent, gatifloxacin, based on the concept of ion-activated in situ gelation. Alginate (Kelton) was used as the gelling agent in combination with HPMC (Methocel E50Lv) which acted as a viscosity-enhancing agent. The rheological behaviors of all formulations were not affected by the incorporation of gatifloxacin. Both in vitro release studies and in vivo pre-corneal retention studies indicated that the alginate/HPMC solution retained the drug better than the alginate or HPMC E50Lv solutions alone. These results demonstrate that the alginate/HPMC mixture can be used as an in situ gelling vehicle to enhance ocular bioavailability and patient compliance.  相似文献   

8.
Alginates are naturally occurring polymers revealing low toxicity, good biocompatibility and biodegradability, excellent gelling and thickening properties, as well as low production cost and good availability. One of the most important features typical for alginates is the ability to undergo ionotropic gelation which is gel formation process occurring upon the contact with cations. Because of their advantageous properties, alginates have been extensively utilized in food and pharmaceutical industries. In this review the current knowledge regarding the most recent studies involving both popularly applied dosage forms, like tablets or hydrogels, and novel advanced drug delivery systems applied in targeted therapies are summarized and discussed. The presented studies indicate that although sodium alginate is a well-established polymer, it is still widely applied as pharmaceutical excipient and the presented research studies indicate that there are still research areas that can be explored and provide innovation in drug delivery systems.  相似文献   

9.
Alginate has potential as a matrix for controlled delivery of protein-based drugs that require site-specific long-term delivery. In the current work albumin, lysozyme and chymotrypsin were encapsulated into alginate microspheres using a novel method that involved soaking the microspheres in a protein-containing NaCl solution. This was followed by recrosslinking with calcium chloride. High pI proteins also appeared to physically crosslink the sodium alginate which resulted in more sustained release. Release was affected by the nature of the releasate solution. In TRIS buffered saline, the high pI proteins chymotrypsin and lysozyme showed sustained release lasting over 150 h. Release into 0.15% NaCl led to relatively constant release of lysozyme and chymotrypsin over more than 2000 h; reduction of the releasate volume lengthened the lysozyme release to greater than 8 months. Released lysozyme was shown to remain active for at least 16 days, in some cases with activity greater than 100% of the active control. This encapsulation technique can therefore be used to rapidly load alginate microspheres with proteins, with high isoelectric point proteins showing particular promise. Furthermore, the interactions between the high pI proteins and the alginate gel could potentially be exploited to generate new protein delivery systems.  相似文献   

10.
The objective of the present study was to design controlled release ophthalmic delivery systems for ciprofloxacin based on polymeric carriers that undergo sol-to-gel transition upon change in pH or in the presence of cations in an attempt to prolong the effect of ciprofloxacin and improve its ocular bioavailability. Carbopol and alginates polymers were used to confer gelation properties to the formulations. Hydroxypropyl methylcellulose and methylcellulose were combined with carbopol to increase the viscosity of the gels and to reduce the concentration of the incorporated carbopol. The release exponents (n) for the designed systems were close to 1, indicating that the drug release occurred by zero-order kinetics. Controlled release in situ gels consisting of carbopol and cellulose derivatives showed an increase in viscosity, gelling capacity, and adhesiveness as the concentration of each polymeric component was increased. On the other hand, these parameters possessed lowest values when alginate was used as an in situ gelling agent. The antimicrobial efficiency of the selected formulation against gram-positive and gram-negative organisms including Echerichia coli, staphylococcus strains and Pseudomonas aeruginosa confirmed that the designed formulation has prolonged the antimicrobial effect of ciprofloxacin and retained its properties against bacteria.  相似文献   

11.
藻酸盐是一种无毒、无味的天然多糖高分子,具有一定的生物相容性、生物降解性及低致敏性,被广泛应用于生物医学工程领域。藻酸盐水凝胶是用途广泛且适应性强的生物材料,如用作组织工程的细胞传递载体和支撑基质、药物载体以及体外细胞实验的模型。本文综述藻酸盐的化学性质和结构修饰,及其生物反应。  相似文献   

12.
Alginate beads containing 5-fluorouracil (5-FU) were prepared by the gelation of alginate with calcium cations. Alginate beads loaded with 5-FU were prepared at 1.0 and 2.0% (w/v) polymers. The effect of polymer concentration and the drug loading (1.0, 5.0 and 10%) on the release profile of 5-FU was investigated. As the drug load increased, larger beads were obtained in which the resultant beads contained higher 5-FU content. The encapsulation efficiencies obtained for 5-FU loads of 1.0, 5.0 and 10% (w/v) were 3.5, 7.4 and 10%, respectively. Scanning electron microscopy (SEM) and particle size analysis revealed differences between the formulations as to their appearance and size distribution. The amount of 5-FU released from the alginate beads increased with decreasing alginate concentrations.  相似文献   

13.
Alginate is a natural polysaccharide found in brown algae. Alginates are widely used in the food and pharmaceutical industries and have been employed as a matrix for the entrapment of drugs, macromolecules and biological cells. Alginate microspheres can be produced by the external or internal gelation method using calcium salts. The addition of calcium chloride solution in the final phase of production of microspheres by external gelation method using an emulsification technique causes the disruption of the equilibrium of the system being stirred, resulting in a significant degree of clumping of microspheres. Therefore, in this study, production of alginate microspheres by the internal gelation method using a modified emulsification technique was explored. The influence of calcium salt, added in varying amounts and at different stages, on the morphology of the microspheres was investigated. The effects of other hardening agents and different drying methods were also studied.  相似文献   

14.
Ionotropic gelation was used to entrap sulindac into calcium alginate beads as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Beads were investigated in vitro for a possible sustained drug release and their use in vivo as a gastroprotective system for sulindac. Process parameters such as the polymer concentration, polymer/drug ratio, and different needle diameter were analysed for their influences on the bead properties. Size augmented with increasing needle diameter (0.9 mm needle: 1.28 to 1.44 mm; 0.45 mm needle: 1.04 to 1.07 mm) due to changes in droplet size as well as droplet viscosity. Yields varied between 87% and 98% while sulindac encapsulation efficiencies of about 88% and 94% were slightly increasing with higher alginate concentrations. Drug release profiles exhibited a complete release for all formulations within 4 hours with a faster release for smaller beads. Sulindac loaded alginate beads led to a significant reduction of macroscopic histological damage in the stomach and duodenum in mice. Similarly, microscopic analyses of the mucosal damage demonstrated a significant mucoprotective effect of all bead formulation compared to the free drug. The present alginate formulations exhibit promising properties of a controlled release form for sulindac; meanwhile they provide a distinct tissue protection in the stomach and duodenum.  相似文献   

15.
Alginate microspheres containing furosemide were prepared by the ionotropic external gelation technique using Ca2+, Al3+ and Ba2+ ions. The incorporation efficiency of the prepared microspheres ranged between 65% and 93%. The effect of sodium alginate concentration, cross-linking ions and drying conditions was evaluated with respect to entrapment efficiency, particle size, surface characteristics and in vitro release behavior. Infrared spectroscopic study confirmed the drug-polymer compatibility. Differential scanning calorimetric analysis revealed that the drug was molecularly dispersed in the alginate microsphere matrices. Scanning electron microscopic study of microspheres showed the rough surface due to higher concentration of drug molecules dispersed at molecular level in the alginate matrices. The mean particle size and entrapment efficiency were found to be varied by changing various formulation parameters. The in vitro release profile could be altered significantly by changing various formulation parameters to give a sustained release of drug from the microspheres. The kinetic modeling of the release data indicate that furosemide release from the alginate microspheres follow anomalous transport mechanism after an initial lag period when the drug release mechanism was found to be Fickian diffusion controlled.  相似文献   

16.
Polymeric reinforcement and coatings of alginate beads were carried out to control the release rate of drug from alginate beads. A poorly water-soluble ibuprofen (IPF) was selected as a model drug. A commercially available Eudragit® RS100 was also used as a polymer. Effects of polymeric contents, the presence of plasticizers and amount of drug loading on the release rate of drug were investigated. The release rate of drug from alginate beads in the simulated gastric fluid did not occur within 2 h but released immediately when dissolution media were switched to the simulated intestinal fluid. No significant difference of release rate from polymer-reinforced alginate bead without plasticizers was observed when compared to plain (simple) beads. However, the release rate of drug from polymer-reinforced alginate beads was further sustained and retarded when aluminium tristearate (AT) as a plasticizer was added to polymer. However, polyethylene glycol 400 (PEG400) did not change the release rate of drug from alginate beads although PEG400 was used to improve dispersion of polymer and sodium alginate, and plasticize Eudragit® RS100 polymer. The presence of plasticizer was crucial to reinforce alginate gel matrices using a polymer. As the amount of drug loading increased, the release rate of drug increased as a result of decreasing effects of polymer contents in matrices. The significantly sustained release of drug from polymer-coated alginate beads occurred as the amount of polymer increased because the thickness of coated membrane increased so that cracks and pores of the outer surface of alginate beads could be reduced. The sustained and retarded action of polymer-reinforced and coated beads may result from the disturbance of swelling and erosion (disintegration) of alginate beads. From these findings, polymeric-rein-forcement and coatings of alginate gel beads can provide an advanced delivery system by retarding the release rate of various drugs.  相似文献   

17.
海藻酸盐复合水凝胶是目前肿瘤药物递送系统材料的研究热点之一。海藻酸盐水凝胶具有良好的生物相容性、可再生的特点,然而天然海藻酸盐水凝胶因降解缓慢、凝胶不稳定等缺点使其在机体环境下可能无法实现预期的结果。海藻酸盐通过结合其他材料,并用离子交联、共价交联和自由基聚合等方法形成水凝胶,使其在癌症治疗中得到广泛应用。本文基于海藻酸盐水凝胶复合体系,综述了海藻酸盐水凝胶结构及其基本性质,重点阐述了近几年来海藻酸盐复合水凝胶在常见癌症治疗应用的研究状况,总结当前研究重点方向并讨论了海藻酸盐复合水凝目前存在问题,为进一步拓展海藻酸盐复合水凝胶在临床癌症治疗的研究提供参考。  相似文献   

18.
In the treatment of health related dysfunctions, it is desirable that the drug reaches its site of action at a particular concentration and that this therapeutic dose range remains constant over a sufficiently long period of time to alter the process. However, the action of pharmaceutical agents is limited by various factors, including their degradation, their interaction with other cells, and their incapacity to penetrate tissues as a result of their chemical nature. For these reasons, new formulations are being studied to achieve a greater pharmacological response; among these, polymeric systems of drug carriers are of high interest. These systems are an appropriate tool for time- and distribution-controlled drug delivery. The mechanisms involved in controlled release require polymers with a variety of physicochemical properties. Thus, several types of polymers have been tested as potential drug delivery systems, including nano- and micro-particles, dendrimers, nano- and micro-spheres, capsosomes, and micelles. In all these systems, drugs can be encapsulated or conjugated in polymer matrices. These polymeric systems have been used for a range of treatments for antineoplastic activity, bacterial infections and inflammatory processes, in addition to vaccines.  相似文献   

19.
The purpose of this research was to develop and evaluate multiparticulates of alginate and chitosan hydrogel beads exploiting pH sensitive property for colon-targeted delivery of theophylline. Alginate and chitosan beads were prepared by ionotropic gelation method followed by enteric coating with Eudragit S100. All formulations were evaluated for particle size, encapsulation efficiency, swellability and in vitro drug release.In vitro dissolution studies performed following pH progression method demonstrated that the drug release from coated beads depends on coat weights applied and pH of dissolution media. Mechanism of drug release was found to be swelling and erosion-dependent. The studies showed that formulated alginate and chitosan beads can be used effectively for the delivery of drug to colon and a coat weight of 20% weight gain was sufficient to impart an excellent gastro resistant property to the beads for effective release of drug at higher pH values.  相似文献   

20.
A single unit sustainable drug release system was developed using hydroxypropyl methylcellulose (HPMC)-based matrices filled in capsule as the drug delivery device. Release behavior of propranolol HCl from these capsules was investigated and least square fitting was performed for the dissolution data with the different mathematical expressions. Effect of diluent, polymer, pH and hydrodynamic force on the drug release from the developed systems was investigated. The utilization of HPMC as a matrix former extended the drug release longer than 8 h. HPMC viscosity grades affected the drug release, that is, increasing the amount of fillers such as lactose and dibasic calcium phosphate enhanced the drug release rate of HPMC matrices. The hydrodynamic force, type and amount of incorporated polymer apparently influenced the drug release. The physiochemical properties of polymers and interaction between HPMC and other polymers were important factors for prolongation of the drug release. The release mechanism from HPMC-based matrices in capsules was the non-Fickian transport in which the sustainable drug release of HPMC capsules could be achieved by the addition of polymeric matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号