首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
高压XLPE电缆的缓冲层是电缆的重要组成部分,对电缆的机械、热、电性能具有重要的影响。而电缆 在实际运行时,由于电缆的热机械运动会使得电缆金属护套脱离电缆绝缘外屏蔽,使电场分布发生改变。本文通 过分析高压XLPE电缆结构,研究了高压XLPE电缆金属护套与绝缘外屏蔽层放电现象的产生和发展。研究及仿 真结果表明:电缆内的电场分布受金属护套与绝缘屏蔽层之间放电间隙的绝缘状态影响,其放电过程发生在电缆 缆芯靠近波纹铝护套直至完全贴合的瞬间,且缓冲层的性能变化会加剧金属护套与绝缘屏蔽层之间放电。  相似文献   

2.
本文通过建立电缆金属护套与绝缘外屏蔽层之间的放电模型,分析了放电的产生与发展过程,仿真了电缆偏心和缓冲层介电常数变化时的电场分布,并对金属护套与绝缘外屏蔽层之间的电场分布规律进行了总结。  相似文献   

3.
分析了高压XLPE电缆金属护套中环流的组成,介绍了电缆金属护套中电容电流、感应电势、感应电流的计算模型,比较了典型110kV、220kV高压电缆在单端接地和交叉互联接地两种接地方式下电缆金属护套环流的计算结果和实测结果,分析和讨论了金属护套环流计算结果的影响因素。  相似文献   

4.
本文分析了66kV XLPE绝缘电力电缆金属护套接地电流产生的原理,结合长春地区运行中的部分66kV XLPE绝缘电力电缆金属护套接地电流的普查情况,分析了电缆金属护套接地电流异常的原因,提出解决的措施。  相似文献   

5.
通过对一起220kV交联聚乙烯绝缘电力电缆(简称XLPE电缆)耐压试验发生局部放电故障的原因分析,提出XLPE电缆例行试验及竣工试验实施更为严格标准要求的技术探讨和建议。  相似文献   

6.
高压电缆系统发生单相短路时在金属护套内会产生过电压,该过电压常常高于电缆外护层的绝缘水平,同时也高于保护器的工频耐压能力。布置回流线的目的是降低该过电压,最大限度避免外护层绝缘和保护器击穿损坏。  相似文献   

7.
在进行变电站的地网设计、研究电缆线路短路对邻近通讯线路的影响时,需计算短路电流在大地和金属护套内的分布情况。本文建立了金属护套两端直接接地和交叉互联两端接地电缆线路的金属护套网络的简化等效模型,在此基础上提出了一种用于计算广州110kV电缆网络单相接地短路时短路电流分布和电缆分流系数的方法,并在实际运行的电缆线路上通过试验验证了算法的正确性。  相似文献   

8.
通过对齐齐哈尔市地区中高压电缆外护套故障的调查和分析,说明高压和超高压XLPE绝缘电缆外护套应有的绝缘性能和防水性能,外护套故障存在的严重性,提出的对策是对外护套及时、有效修补。  相似文献   

9.
一般来说,对150 kV以上挤压式绝缘的地下电力电缆,其试验要求和试验方法系按IEC62067的推荐方法。但这个标准不包括XLPE绝缘温度高达100℃持续2小时的型式试验,它不会作预防性试验当电缆故障运行时温度达到105℃或者时间延长,也不会对微型缺陷以及在XLPE和半导电屏蔽层存在杂质的预防性检测。再者IEC62067标准也不包括一些特定的机械和电器试验,这些试验能提供一些关键性数据,以提高电缆系统设计延长寿命的信心。因此,一些公用事业单位会提出要求,根据国家标准和企业本身的标准,额外增加一些试验。在2014年,澳洲跨网(Trans Grid)公司完成设计、制造和安装一条双回路330 kV XLPE电缆线路,跨过澳洲悉尼15.5 km长的路径,并装上条件监控系统(Condition monitoring system CMS)。这个电缆系统系澳洲首次安装的主要330 kV XLPE电缆。为了给跨网公司的高压网络更可靠的要求,除了按IEC62067标准推荐的试验外,还进行了一系列的特殊试验,以便更好地了解该电缆系统的性能,特别是在高温的情况下。这些特殊的附加试验为:a)热循环电压试验(Heating Cycle Voltage Test HCVT)¬——这个试验的电缆、电缆附件和条件监控系统(CMS)作为一个整体试验,模拟现场实际的安装条件。这个HCVT组合,是在常温及事故温度之间,施加4个分别开的加热和冷却循环阶段,以模拟运行的条件,即连续施加电压2U (420 kV),见表2.1.在试验每一阶段完成后,测量电缆的温度和局放(PD)。完成试验后,整个组合尝试进行一个升压破坏试验,以决定在加速老化过程中,通过了施加电力和热应力后,对这个系统的功能限制。b)预制铸模接头压力试验——这个试验的目的就是要测量和确定,在热循环过程中以及在最低及最高(105℃)运行温度的条件下,得出电缆绝缘与EPR橡胶模界面处的最大和最小的压应力。c)摩擦系数试验——这个试验的目的是要测量,在预定的运行温度时,得出电缆芯与波纹金属护套之间的摩擦水平。d)短路联结试验——这个试验是要验证电缆金属护套与接头金属套筒之间的连接热稳定性。上述这些试验的结果,可在预期电缆寿命过程中,通过了全部运行的条件。对确认电缆系统的设计将是十分有利的,而且可提供有价值的数据,进行条件评估和电缆系统管理,又可采用电缆蛇形敷设和预制模接头进行连接,从而大大简化现场施工敷设电缆的工作。  相似文献   

10.
本文从理论上阐述了超低频tan?对评价交联聚乙烯(XLPE)电缆老化状态的有效性,并采用奥地利保尔公司Viola TD超低频介损测试仪对天津地区11条在运10kV交联电缆在0.1Hz下的tan?进行现场测量,在分析超低频损耗特性与绝缘水树枝老化之间联系的基础上,根据国际电力电子工程师协会IEEE400.2-2013《有屏蔽层电力电缆系统绝缘层现场试验与评估导则》对测试数据进行了分析。结果表明,采用0.1Hz超低频介损检测法是能够用于评估10kV交联聚乙烯电缆绝缘老化状态,超低频tan?作为一种有效的XLPE电缆绝缘老化诊断方法,对天津地区配网电缆老化判据的研究具有重要指导意义。  相似文献   

11.
通过局放检测、解剖、理化试验等方法,分析了G&W金属应力锥结构110kV电缆终端多次发生运行击穿的原因,研究了其发展机理。该终端核心部位安装工艺复杂但安装现场质量控制手段、检查措施缺失可能埋下隐患,在压力补偿元件失效后隐患终端内部发生局放、绝缘劣化,局放及其衍生化学反应、绝缘剂劣化等的综合作用下导致故障。  相似文献   

12.
高压单芯电缆金属护套不同的接地方式会对高压单芯电缆产生不同的运行效果,不正确的接地方式在遇到线路短路故障、雷击冲击及操作过电压时金属护套中会形成很高的感应电压,直接威胁人身和电缆的运行安全,同时,不正确的接地方式会在电缆金属护套中形成环流,电缆金属护套长期处在环流中会直接影响到电缆的载流量造成损耗电源电能。  相似文献   

13.
在解剖一个110kV 交联电缆的渗油故障终端中,打开B、C相终端顶板后检查发现,C相终端内油面在应力锥上方,B相终端内油面已降至应力锥下方,而该品牌附件要求必须确保油面在套管上法兰面下100-150mm。在将B、C相终端的所剩硅油放出后,检查发现电缆终端内缠绕的绝缘胶带较薄,密封带绕包厚度大约3mm,并存在有部分细小沙眼和小孔,电缆芯线与底座铝合金套管存在偏心率不足的问题,同时在破开绝缘绕包带后发现其金属屏蔽网存在断裂现象,以及半导电胶带开裂的情况,硅油有少部分流入底座铝合金套管内,底座胶圈无龟裂老化情况。  相似文献   

14.
过对发生故障的110kV整体预制式EPDM电缆中间接头进行解剖,分析、判断故障原因是整体预制绝缘件内应力锥存在制造工艺缺陷。在竣工耐压试验时,出现电场过度集中导致应力锥缺陷部分与绝缘件内导体屏蔽间绝缘击穿。  相似文献   

15.
本文通过实测案例重点研究了配网电缆的绝缘状态评估方法。应用低频正弦波电源开展局部放电结合介质损耗相结合的技术路线对中压电缆开展全面的状态评估工作。研究了通过检测中压电缆的局部放电判断电缆中的局部放电缺陷点的严重程度和放电缺陷点位置问题;研究了通过检测中压电缆的介质损耗判断电缆的整体老化状态问题。对于存在局放缺陷的电缆进行放电点精确定位,采取缺陷点去除的方式提升电缆的运行可靠性。  相似文献   

16.
单芯高压电缆多采用保护器对电缆护层绝缘进行过电压保护,本文对高压电缆护层保护器的性能及选择应用进行了分析,结合一起护层保护器预试不合格案例,采用试验、解剖方法对其进行了研究,发现运行中的保护器不合格原因主要由受潮引起,并对保护器的检验安装给出建议。  相似文献   

17.
纵观高压电力电缆的历史,从上世纪20年代开始,主要用于电力系统的高端(油浸纸绝缘此时已普遍用于配电线路)。至80年代初期,110kV及以上高压电缆逐步被新一代的交联绝缘电缆代替,随着交联聚乙烯电缆(以下简称电缆)生产工艺的研制成功后逐渐开始广泛应用。交联电缆与原充油电缆比较,优点在于结构简单轻便、减少了整套充油设备易于弯曲、电气性能优良、耐热性能好、传输容量大、机械强度高;而充油电缆只是在安全性和使用寿命方面稍占优势。目前上海、北京等地的高压充油电缆也逐步被交联电缆取代,而华南特别是广州地区高压交联电缆发展较快,并占有较大比例。因此本文尝试以理论知识结合工作经验论述高压交联聚乙烯绝缘电缆施工、运行中如何保证电缆外护层重要性。  相似文献   

18.
高压电缆接地箱是为了实现金属护层不同类型接地方式而出现的功能产品,不同类型接地箱功能单一。本文提出一种高压电缆多功能接地箱,通过对现有电缆交叉互联箱、保护接地箱、直接接地箱进行优化设计和功能扩展,可实现同轴电缆在一种箱体内的五种接线方式,应用效果表明该种多功能接地箱在电缆金属护层接地系统改造中能节省检修时间、提高检修效率、降低检修成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号