首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
Establishment of human embryonic stem cell line from gamete donors   总被引:1,自引:0,他引:1  
Background Human embryonic stem (HES) cell derived from human blastocyst can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent. It has exciting potential in human developmental biology, drug discovery, and transplantation medicine. But there are insufficient HES cell lines for further study. Methods Three oocyte donors were studied, and 3 in vitro fertilization (IVF) cycles were carried out to get blastocysts for the establishment of HES cell line. Isolated from blastocysts immunosurgically, inner cell mass (ICM) was cultured and propagated on mouse embryonic fibroblasts (MEFs). Once established, morphology, cell surface markers, karyotype and differentiating ability of the cell line were thoroughly analyzed. Results Four ICMs from 7 blastocysts were cultured on MEFs. After culture, one cell line ( criES-1 ) was established and met the criteria for defining human pluripotent stem cells including a series of markers used to identify pluripotent stem cells, morphological similarity to primate embryonic stem cells and HES reported else where. Normal and stable karyotype maintained over 60 passages, and demonstrated ability to differentiate into a wide variety of cell types. Conclusions HES cell lines can be established from gamete donors at a relatively highly efficient rate. The establishment will exert a widesoread impact on biomedical research.  相似文献   

3.
Summary: Oval cells have a potential to differentiate into a variety of cell lineages including hepatocytes and biliary epithelia. Several models have been established to activate the oval cells by incorporating a variety of toxins and carcinogens, alone or combined with surgical treatment. Those models are obviously not suitable for the study on human hepatic oval cells. It is necessary to establish a new and efficient model to study the human hepatic oval cells. In this study, the hepatocyte growth factor(HGF) and epidermal growth factor(EGF) were used to induce differentiation of mouse embryonic stem(ES) cells into hepatic oval cells. We first confirmed that hepatic oval cells derived from ES cells, which are bipotential, do exist during the course of mouse ES cells' differentiation into hepatic parenchymal cells. RT-PCR and transmission electron microscopy were applied in this study. The ratio of Sca-1+/CD34+ cells sorted by FACS in the induction group was increased from day 4 and reached the maximum on the day 8, whereas that in the control group remained at a low level. The differentiation ratio of Sca-1+/CD34+ cells in the induction group was significantly higher than that in the control group. About 92.48% of the sorted Sca-1+/CD34+ cells on the day 8 were A6 positive. Highly purified A6+/Sca-1+/CD34+ hepatic oval cells derived from ES cells could be obtained by FACS. The differentiation ratio of hepatic oval cells in the induction group(up to 4.46%) was significantly higher than that in the control group. The number of hepatic oval cells could be increased significantly by HGF and EGF. The study also examined the ultrastructures of ES-derived hepatic oval cells' membrane surface by atomic force microscopy. The ES-derived hepatic oval cells cultured and sorted by our protocols may be available for the future clinical application.  相似文献   

4.
Embryonic stem(ES) cells are pluripotent cells that can give rise to derivatives of all three embryonic germ layers. Due to its characteristics, the patient-specific ES cells are of great potential for transplantation therapies. Several strategies can reprogramme somatic cells back to pluripotent stem cells: nuclear transfer, fusion with ES cells, treatment with cell extract and induction by specific factors. Considering the future clinical use, the differentiation from ES to neurons, cardiomyocytes and many other types of cells currently provide basic cognition and experience to regenerative medicine. This article will review two courses, the reprogramming of differentiated cells and the differentiation of ES cells to specific cell types.  相似文献   

5.
Background Embryonic stem (ES) cells poss unlimited self-renewal capacity and the ability to differentiate into cell of all three germ layers in vitro. Induced differentiation of ES cells to neural lineage cells has great potential in basic study of neurogenesis and regeneration therapy of neurodegenerative diseases. Histone deacetylase (HDAC) inhibitors enhance histone acetylation so that globularly activate gene expression and may initiate multilineage differentiation. In this study,we aimed to develop a method to induce the differentiation of ES cells to neural cells combining HDAC inhibition and neural cellselection.Methods In this study, we used HDAC inhibitor sodium butyrate (NAB) to induce the differentiation of mouse embryonic stem cells to neural cells through monolayer culture. After differentiation initiation by histone deacetylase inhibitor sodium butyrate, neural cells were induced and selected with a serum free culture system. Results Homogeneous neurons without glial cells demonstrated by molecular marker expression were differentiated with the method. The resultant neurons were excitable. Conclusion The method combined differentiation induction effect of HDAC inhibitors and selective culture system to derive neural cells from ES cells, and implied the involvement of epigenetic regulation in neural differentiation.  相似文献   

6.
The effect of different somatic cell cultures on mouse embryo development at early cleavage stage in vitro was studied.Oviductal epithelial,cumulus,uterine of fibroblast cells were co-cultured with mouse embryos respectively for 4 days,Embryos at 1-cell stage were collected from swollen ampullae of the oviducts.A total number of 121,111,132 and 89 embyos were co-cultured with oviduct epithelial,cumulus,uterine and fibroblast cells respectively,Among them,109,88,101 and 20 embryos developed regularly to the blastocyst stage respectively.The blastocysts were transferred to the uteri of synchronized recipient mice,only 9 blastocysts co-cultured with oviductal epithelial cells and 6 blastocysts with cumulus cells had developed normally and been implanted.These data indicated that oviductal epithelial cells and cumulus cells exert a specific promoting action on early embryonic development in vitro.  相似文献   

7.
Background  Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability.
Methods  Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propogate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line’s ability to directly differentiate into pancreatic and hepatic cells.
Results  We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line.
Conclusions  This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.
  相似文献   

8.
The effects of stromal-derived factor 1 preconditioning (PC) on apoptosis of bone mesenchymal stem cells (BMSCs) treated with hypoxia plus serum deprivation were investigated. Bone mesenchymal stem cells were cultured with the whole marrow-adherence technique. RT-PCR and immunohistochemistry were used to detect the expression of CXCR4. BMSCs were incubated in medium for 24 h with 10 ng/mL and 100 ng/mL SDF-1 respectively, and then they were treated with hypoxia plus serum deprivation for 6 h. Apoptosis rate was determined by flow cytometry and TUNEL method. The results showed that BMSCs had CXCR4 expression. The number of apoptotic cells was significantly reduced in SDF-1 PC group as compared with the control group, and 100 ng/mL SDF-1 PC group had the lowest level of apoptosis. It was concluded that SDF-1 preconditioning suppresses the apoptosis of BMSCs treated with hypoxia plus serum deprivation.  相似文献   

9.
To establish a method of directional differentiation and efficient production of neurons from embryonic stem cells (ES cells) in vitro, based on the 4-/4 protocol described by Bain, a new method was established to induce ES cells differentiating into neurons by means of three-step differentiation using all-trans retinoic acid (ATRA) combined with astrocyte-conditioned medium(ACM) in Vitro. The totipotency of ES cells was identified by observation of cells‘ morphology and formations of teratoma in immunocompromised mice. The cells‘ differentiation was evaluated continuously by the detection of the specific cellular markers of neural stem cells, neurons and astrocytes,including nestin, NSE and GFAP using immunohistochemistry assay. The NSE positive cells‘ ratio of the differentiated cells was determined by flow cytometry. It was found that the transparent circular clusters surrounding embryoid bodies induced with combining induction protocol formed just after 24 h and gradually enlarged later. This phenomenon could not be observed in EBs induced only by ATRA. The NSE positive cells‘ ratio in the ceils induced with ATRA and ACM was higher than that of the cells induced by ATRA at different time points of differentiation, and finally reached up to 73.5 % among the total differentiated population. It was concluded that ES cells could be induced into neurons with high purity and yield by means of inducing method combining with ATRAand ACM.  相似文献   

10.
Propofol (2, 6-diisopropylphenol) is a general intravenous anesthetic which plays roles in the central neural system by binding GABAA receptors (GABAARs) and enhancing the chloride channels of the neurons.1 Previous studies mainly focused on the effects of anesthetics on mature neurons, but little attention was paid to their role in early neural differentiation or neural stem cells. Therefore, in the present study, we choose the widely used mouse embryonic cells (ES) cells as the model to investigate the potential effect ofpropofol on neuronal differentiation.  相似文献   

11.
Stress urinary incontinence is one of the most common diseases in urology. The main treatments for stress urinary incontinence are pharmacotherapy, physicobehavioral therapy and surgery.However, the results of present methods are not satisfactory. Tissue engineering is a newly emerging technology that may provide a novel method for the treatment of stress urinary incontinence.  相似文献   

12.
Background Sweat glands (SGs) can not regenerate after complete destruction in the severe skin injury,so it is important to find a ideal stem cell source in order to regenerate functional SGs.Hair foll...  相似文献   

13.
This study examined the osteogenic effect of electromagnetic fields (EMF) under the simulated in vivo conditions. Rat bone marrow mesenchymal stem cells (BMSCs) and rat osteoblasts were co-cultured and exposed to 50 Hz, 1.0 mT EMF for different terms. Unexposed single-cultured BMSCs and osteoblasts were set as controls. Cell proliferation features of single-cultured BMSCs and osteoblasts were studied by using a cell counting kit (CCK-8). For the co-culture system, cells in each group were randomly chosen for alkaline phosphatase (ALP) staining on the day 7. When EMF exposure lasted for 14 days, dishes in each group were randomly chosen for total RNA extraction and von Kossa staining. The mRNA expression of osteogenic markers was detected by using real-time PCR. Our study showed that short-term EMF exposure (2 h/day) could obviously promote prolifera- tion of BMSCs and osteoblasts, while long-term EMF (8 h/day) could promote osteogenic differen- tiation significantly under co-cultured conditions. Under EMF exposure, osteogenesis-related mRNA expression changed obviously in co-cultured and single-cultured cells. It was noteworthy that most osteogenic indices in osteoblasts were increased markedly after co-culture except Bmp2, which was increased gradually when ceils were exposed to EMF. Compared to other indices, the expression of Bmp2 in BMSCs was increased sharply in both single-cultured and co-cultured groups when they were exposed to EMF. The mRNA expression of Bmp2 in BMSCs was approximately four times higher in 8-h EMF group than that in the unexposed group. Our results suggest that Bmp2-mediated cellular interaction induced by EMF exposure might play an important role in the osteogenic differ- entiation of BMSCs.  相似文献   

14.
Liver fibrosis is a primary cause of liver cirrhosis, and even hepatocarcinoma. Recently, the usage of mesenchyrnal stem cells (MSCs) has been investigated to improve liver fibrosis. It has been reported that the differentiation, proliferation and migration of MSCs can be regulated by traditional Chinese medicine treatment; however, the mechanisms are still unclear. In this article, the authors review the characteristics of MSCs such as multidirectional differentiation and homing, and its application in animal experiments and clinical trials. The authors also list areas that need further investigation, and look at the future prospects of clinical application of MSCs.  相似文献   

15.
The effects of granulocyte colony-stimulation-factor (G-CSF) on stem cell mobilization and its impact on the amplification of myeloid-derived suppressor cells (MDSCs) of donor mice were ex- amined. A mouse model of stem cell mobilization was established by consecutive subcutaneous injec- tion of 100 μg/kg G-CSF for 5 days. The blood from the donor mice was routinely examined during mobilization. Stem cells and MDSCs were analyzed by flow cytometry. The immunosuppressive mole- cules derived from MDSCs in serum and spleen, including hydrogen dioxide (H202) and nitric oxide (NO), and the activity of nitric oxide synthase (NOS) were determined during the mobilization. Apop- tosis of T lymphocytes was assessed by using Annexin-V/PI. During stem cell mobilization, the number of lymphocytes and white blood cells in the peripheral blood was increased, and peaked on the 4th day. The number of stem cells in G-CSF-treated mice was significantly greater than that in controls (P〈0.01). The expansions of MSDCs were also observed after G-CSF mobilization, with a more notable rate of growth in the peripheral blood than in the spleen. The activity of NOS and the production of NO were increased in the donor mice, and the serum H202 levels were approximately 4-fold greater than the con- trois. Consequently, apoptosis of T lymphocytes was increased and showed a positive correlation with the elevated percentage of MDSCs. It was concluded that G-CSF could provide sufficient peripheral blood stem cells for transplantation. Exogenous administration of G-CSF caused the accumulation of MDSCs in the peripheral blood and the spleen, which could lead to apoptosis ofT lymphocytes and may offer a new strategy for the prevention and treatment of graft versus host disease.  相似文献   

16.
In this study, we prepared PLLA/bpV(pic) microspheres, a bpV(pic) controlled release system and examined their ability to protect nerve cells and promote axonal growth. PLLA microspheres were prepared by employing the o/w single emulsification-evaporation technique. Neural stem cells and dorsal root ganglia were divided into 3 groups in terms of the treatment they received: a routine medium group(cultured in DMEM), a PLLA microsphere group(DMEM containing PLLA microspheres alone) and a PLLA/bpV(pic) group [DMEM containing PLLA/bpV(pic) microspheres]. The effects of PLLA/bpV(pic) microspheres were evaluated by the live-dead test and measurement of axonal length. Our results showed that PLLA/bpV(pic) granulation rate was(88.2±5.6)%; particle size was(16.8±3.1)%, drug loading was(4.05±0.3)%; encapsulation efficiency was(48.5±1.8)%. The release time lasted for 30 days. In PLLA/bpV(pic) microsphere group, the cell survival rate was(95.2 ±4.77)%, and the length of dorsal root ganglion(DRG) was 718±95 μm, which were all significantly greater than those in ordinary routine medium group and PLLA microsphere group. This preliminary test results showed the PLLA/bpV(pic) microspheres were successfully prepared and they could promote the survival and growth of neural cells in DRG.  相似文献   

17.
It is widely known that hypoxia can promote chondrogenesis of human bone marrow de- rived mesenchymal stem cells (hMSCs) in monolayer cultures. However, the direct impact of oxygen tension on hMSC differentiation in three-dimensional cultures is still unknown. This research was de- signed to observe the direct impact of oxygen tension on the ability of hMSCs to "self assemble" into tissue-engineered cartilage constructs, hMSCs were cultured in chondrogenic medium (CM) containing 100 ng/mL growth differentiation factor 5 (GDF-5) at 5% (hypoxia) and 21% (normoxia) 02 levels in monolayer cultures for 3 weeks. After differentiation, the cells were digested and employed in a self- assembly process to produce tissue-engineered constructs under hypoxic and normoxic conditions in vi- tro. The aggrecan and type ]I collagen expression, and type X collagen in the self-assembled con- structs were assessed by using immunofluorescent and immunochemical staining respectively. The methods of dimethylmethylene blue (DMMB), hydroxyproline and PicoGreen were used to measure the total collagen content, glycosaminoglycan (GAG) content and the number of viable cells in each con- struct, respectively. The expression of type II collagen and aggrecan under hypoxic conditions was in- creased significantly as compared with that under normoxic conditions. In contrast, type X collagen expression was down-regulated in the hypoxic group. Moreover, the constructs in hypoxic group showed more significantly increased total collagen and GAG than in normoxic group, which were more close to those of the natural cartilage. These findings demonstrated that hypoxia enhanced chondro- genesis of in vitro, scaffold-free, tissue-engineered constructs generated using hMSCs induced by GDF-5. In hypoxic environments, the self-assembled constructs have a Thistological appearance and biochemical parameters similar to those of the natural cartilage.  相似文献   

18.
This study examined the effect of Notch-1 signaling on malignant behaviors of breast cancer cells by regulating breast cancer stem cells (BCSCs). BCSCs were enriched by using serum-free me- dium and knocked out of Notch-1 by using a lentiviral vector. Real-time polymerase chain reaction (RT-PCR) and Western blotting were used to detect the Notch-1 expression levels in breast cancer cell lines and BCSCs, and fl0w cytometry to detect the proportion of BCSCs in BCSC spheres. The BCSC self-renewal, migration, invasion, and tumorigenicity were examined by the tumor microsphere-forming assay and transwell assay and after xenotransplantation. The results showed that the Notch-1 silencing reduced the number of BCSC spheres, the proportion of BCSCs, and the number of cells penetrating through the transwell membrane. It also decreased the size of tumors that were implanted in the nude mice. These results suggest that Notch-1 signaling is intimately linked to the behaviors of BCSCs. Blocking Notch-1 signaling can inhibit the malignant behaviors of BCSCs, which may provide a prom- ising therapeutical approach for breast cancer.  相似文献   

19.
Background Radiation-induced injury after accidental or therapeutic total body exposure to ionizing radiation has serious pathophysiological consequences,and currently no effective therapy exists.This study was designed to investigate whether transplantation of allogeneic murine compact bone derived-mesenchymal stem cells (CB-MSCs) could improve the survival of mice exposed to lethal dosage total body irradiation (TBI),and to explore the potential immunoprotective role of MSCs.Methods BALB/c mice were treated with 8 Gy TBI,and then some were administered CB-MSCs isolated from C57BL/6 mice.Survival rates and body weight were analyzed for 14 days post-irradiation.At three days post-irradiation,we evaluated IFN-Y and IL-4 concentrations; CD4+CD25+Foxp3+ regulatory T cell (Treg) percentage; CXCR3,CCR5,and CCR7 expressions on CD3+T cells; and splenocyte T-bet and GATA-3 mRNA levels.CB-MSC effects on bone marrow hemopoiesis were assessed via colony-forming unit granulocyte/macrophage (CFU-GM) assay.Results After lethal TBI,compared to non-transplanted mice,CB-MSC-transplanted mice exhibited significantly increased survival,body weight,and CFU-GM counts of bone marrow cells (P<0.05),as well as higher Treg percentages,reduced IFN-Y,CXCR3 and CCR5 down-regulation,and CCR7 up-regulation.CB-MSC transplantation suppressed Th1 immunity.Irradiated splenocytes directly suppressed CFU-GM formation from bone marrow cells,and CB-MSC co-culture reversed this inhibition.Conclusion Allogeneic CB-MSC transplantation attenuated radiation-induced hematopoietic toxicity,and provided immunoprotection by alleviating lymphocyte-mediated CFU-GM inhibition,expanding Tregs,regulating T cell chemokine receptor expressions,and skewing the Th1/Th2 balance toward anti-inflammatory Th2 polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号