首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
采用不同表面性质的气相法纳米二氧化硅,利用硅橡胶混炼胶界面结合橡胶来研究高温硫化硅橡胶补强作用的影响因素,并结合扫描电镜分析界面的作用形式。结果表明结合橡胶以纳米二氧化硅的网络结构为骨架,纳米二氧化硅粉体的结构性越高,形成的三维立体网络结构结合橡胶体越好,对硅橡胶制品的补强效果越好。气相法纳米二氧化硅粉体填加质量分数为0.26~0.29时,表面羟基个数在1.1~1.4之间,有效补强体积最大,补强效果也最好。  相似文献   

2.
采用含有吡啶官能团的分子对高耐磨炭黑粒子(HAF)原位接枝改性调控填料/基体界面相互作用。采用Ayala参数定量计算填料/基体界面相互作用,研究了界面相互作用对天然橡胶(NR)补强性能的影响。复合材料的拉伸应力-应变曲线表明,填充接枝炭黑的复合材料具有更高的力学性能,其原因是炭黑接枝增强了填料-基体界面相互作用,削弱了填料-填料相互作用。  相似文献   

3.
用链长分布不同的活性聚苯乙烯子聚物与二乙烯基苯进行阴离子嵌段共聚,合成了一系列两相模型交联网络。以作者等提出的方法测定了所合成网络的结构非均一因子Z。实验测定的网络结构非均一因子Z与交联前聚苯乙烯活性链的分子量分布宽度指数d之间有平行的相应变化规律,表明所给予的非均一因子Z的物理意义是合理的。同时说明,子聚物链长分布较宽时,在网络的高交联区中除了二乙烯基苯外,还有一些对溶胀无贡献的子聚物以悬挂链的形式存在。  相似文献   

4.
用链长分布不同的活性聚苯乙烯子聚物与二乙烯基苯进行阴离子嵌段共聚,合成了一系列两相模型交联网络。以作者等提出的方法测定了所合成网络的结构非均一因子Z。实验测定的网络结构非均一因子Z与交联前聚苯乙烯活性链的分子量分布宽度指数d之间有平行的相应变化规律,表明所给予的非均一因子Z的物理意义是合理的。同时说明,子聚物链长分布较宽时,在网络的高交联区中除了二乙烯基苯外,还有一些对溶胀无贡献的子聚物以悬挂链的形式存在。  相似文献   

5.
目的:研究仿真精英群体在社交网络中发言频率降低而导致网络观点演化出现偏差的现象,为政府等机构有效引导舆论、治理网络乱象等提供参考。方法:将网络用户细分为普通群体、精英群体和超级用户3类,基于改进的Hegselmann-Krause(HK)模型构建精英群体沉默状态下的网络观点演化模型,并基于MATLAB进行仿真。结果:网络噪声会对网络观点演化造成干扰,且噪声越大,整体网络观点越难达到统一;超级用户基本不受网络噪声干扰,仍能够对网络观点演化趋势产生统领性的影响;精英群体会受到网络噪声干扰,且由噪声导致的沉默行为会造成整体网络观点的偏差性演化,尤其当与超级用户的观点值相左时。结论:重视因精英群体沉默而导致的网络观点演化偏差现象,建议通过健全网络“实名制”配套机制、加快推进网络立法进程等方式,保证精英群体理性发声的权利和底气,从而引导网络舆情健康、有序发展。  相似文献   

6.
通过硝酸氧化处理炭黑(CB),使其表面含氧量(氧元素与碳元素的摩尔百分比)由1.0%(CB1)提高到7.0%(CB2)。分别以CB1和CB2为填料,以高密度聚乙烯(HDPE)为基体,制备了两种导电复合材料。与碳粒子填充极性聚合物相反,表面含氧量高的CB2填充HDPE复合物的渗流阈值低。采用SEM、动态电渗流效应和Payne效应分析了两种炭黑在HDPE中的分散和凝聚特征。结果表明:CB2在HDPE中分散更不均匀,更容易凝聚形成网络。炭黑在非极性HDPE中凝聚形成导电网络的能力随炭黑表面含氧量的增加而提高。  相似文献   

7.
用炭黑填充SBS/橡胶制备导电复合材料。研究了复合材料的导电性、电阻率随温度变化的特性。讨论了炭黑填充率、炭黑结构和性质以及SBS对复合材料导电性和电阻率-温度特性的影响。实验结果指出,使用中等结构炭黑(N550)填充SBS/橡胶共混基体可获得一定强度的PTC复合材料;适量填充SBS可改善SBS/橡胶复合材料的高温ρ ̄T特性,硫化SBS/SBR可减轻其滞后性。  相似文献   

8.
利用水热法合成了SnO2Si/C复合材料,利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了材料的物相和电极的微结构,结果表明,合成的复合材料中SnO2颗粒平均尺寸为5.3 nm,碳的加入抑制了活性中心Si和SnO2在循环过程中较大的结构变化,且SnO2和Si颗粒均匀地分散在碳的网络结构中,增加了复合材料的电接触。合成样品的电化学测试表明,碳的网络结构提高了SnO2Si复合材料的可逆容量和循环性能,经过400 ℃ N2处理的SnO2Si/C电极在100 mA/g的充放电密度下首次可逆容量为1 050 mAh/g,50个循环后复合材料仍然有589 mAh/g的可逆容量,库仑效率接近99.7%。在600 mA/g电流密度下,可逆容量仍然达390 mAh/g。  相似文献   

9.
用自旋-晶格弛豫研究了溶胀的交联聚丙烯酰胺-丙烯酸网络和线型聚苯乙烯溶液中质子的弛豫行为。交联网络中,随着交联度增大,T1CH/T1、CH2的值由1.17逐渐趋于1;,而线型聚苯乙烯溶液中,T1CH/T1CH2的的值由最稀浓度下的1.7过渡到1。  相似文献   

10.
采用原位固相接枝技术,将天然橡胶大分子接枝到炭黑表面,并考察了炭黑表面活性对其填充天然橡胶中填料网络和填料与橡胶相互作用程度的影响。结果表明:炭黑经过接枝改性后,其表面活性增加,且与橡胶基体的相互作用力增大,炭黑之间的网络化程度降低。  相似文献   

11.
利用原位球磨法制备了聚苯乙烯磺酸钠表面修饰炭黑,粒径分析和离心沉降实验结果表明,改性炭黑在水中具有十分优异的分散稳定性。利用该改性炭黑通过胶乳混合法成功制备了亲水性炭黑-天然橡胶纳米复合材料。采用万能电子拉力机、扫描电子显微镜、结合橡胶含量分析和动态热机械分析等多种手段对该复合材料进行了测试和研究。结果表明,与未改性炭黑相比,改性炭黑在橡胶基体中的分散性明显改善,与基体的相互作用显著增强,材料的力学性能大幅提高,填料网络化程度明显减弱。  相似文献   

12.
研究了炭黑填充复合型导电硅橡胶的电阻温度特性,分析了升温过程中导电硅橡胶电阻特性的详细变化过程。研究了导电粒子和白炭黑含量对导电硅橡胶电阻温度特性的影响,测量了在不同热处理温度下电阻率的变化及加力时电阻的驰豫时间。分析了热处理对电阻特性影响的机理。  相似文献   

13.
气相法制备的纳米二氧化硅是补强高温硫化硅橡胶的最好填料。研究了纳米二氧化硅的结构及分散性对硅橡胶结构及性能的影响。结果表明:分散成100~200nm尺度的二氧化硅聚集体对硅橡胶具有良好的补强作用。未经表面改性的纳米二氧化硅,m(SiO2):m(生胶)=0.35~0.40时对硅橡胶的补强作用效果最佳。硅橡胶中加入纳米二氧化硅粉体,形成了以二氧化硅为晶核的微晶区,增加了物理交联点,更易发生结晶。  相似文献   

14.
考察了不同香味的水性香精对炭黑中性墨水理化性能、平均粒径、流变以及书写性能的影响,结果表明:在复杂体系的炭黑中性墨水中添加香精,要对香精进行选择,当香精的组分不含芳环化合物时,香精对墨水的性能影响较小。通过筛选香精,发现制备香型炭黑中性墨水是可行的。  相似文献   

15.
用交流阻抗谱论证了聚乙烯/碳黑(PE/CB)导电复合材料的网络导电机理,分析了热处理过程对复合材料电性能的影响。通过在不同频率和低电压下测定热处理前后及不同长度的导电复合材料样品的导电能力(A)、导电方式(B)和电阻值(Ra Rc),证明了材料内部存在着直通碳链、小间隙的碳链和大间隙的碳链,呈现三维网络导电结构。  相似文献   

16.
路智静  黄如  孙俊峰  张磊 《医学教育探索》2017,43(2):234-240,291
由于无线传感器能量受限,最大化网络生命周期成为优化网络拓扑首要考虑的问题。基于BA无标度理论,提出了一种WSNs拓扑优化模型(WTOM)。在网络中引入超级节点,结合粒子群算法合理地划分整个网络;在节点间建立多因素为导向的虚拟力场,利用虚拟力调整超级节点的部署位置,实现网络能量的均衡消耗,通过对关键节点的保护,提高网络的抗毁鲁棒性。经理论分析和实验证明,该网络不仅继承了BA无标度网络的特征还具有小世界特性;同时该动态拓扑延长了网络的生命周期,提高了网络面向数据收集的节能性。  相似文献   

17.
研究了炭黑分散效果对具有PTC效应的高密度聚乙烯/炭黑导电复合材料性能的影响。实验结果表明,由不同粒度和比表面积的两种炭黑混合后填充的复合材料同由导电性能较好的乙炔炭黑填充复合材料比较,前者具有较低的渗滤阀值、较高的临界温度、优良的PTC特性以及电阻稳定性好的特点.  相似文献   

18.
采用固相原位接枝反应方法将炭黑(CB)与有机小分子在Haake转矩流变仪中进行接枝反应,制得接枝炭黑(GCB)。通过原子力显微镜(AFM)观察发现该接枝炭黑呈单分散分布,粒径为30 nm左右。将接枝炭黑制得涂料并考察其对涂料性能的影响,结果表明:与用未接枝炭黑制得的涂料相比,接枝炭黑制得的涂料在光泽度、附着力等方面均有较大提高。同时,扫描电子显微镜(SEM)也观察到接枝炭黑在涂料中均匀分散,且达到纳米级。  相似文献   

19.
以煤焦气化反应模型为基础,结合BP神经网络参数估计器,建立了用于模拟煤焦气化过程的混合神经网络模型。结果表明该混合神经网络模型能很好地描述煤焦的气化过程,可以得到在实验过程中无法测得的2个参数,即:在煤焦中具有活性的碳与总碳的比值A和具有活性碳的单位质量反应速率Rr。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号