首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Recent advances in molecular electrophysiology have made possible the development of more selective ion channel blockers for therapeutic use. However, more information is needed about the effects of blocking specific channels on repolarization in normal human atrium and in atrial cells of patients with atrial fibrillation (AF). AF-induced electrical remodeling is associated with reductions in transient outward current (Ito), ultrarapid delayed rectifier current (IKur), and L-type calcium current (ICa,L). Direct evaluation of the results of ion channel depression is limited by the nonspecificity of the available pharmacological probes. OBJECTIVES: Using a mathematical model of the human atrial action potential (AP), we aimed to: (1) evaluate the role of ionic abnormalities in producing AP changes characteristic of AF in humans and (2) explore the effects of specific channel blockade on the normal and AF-modified AP (AFAP). METHODS: We used our previously developed mathematical model of the normal human atrial AP (NAP) based on directly measured currents. We constructed a model of the AFAP by incorporating experimentally-measured reductions in Ito (50%), IKur (50%), and ICa,L (70%) current densities observed in AF. RESULTS: The AFAP exhibits the reductions in AP duration (APD) and rate-adaption typical of AF. The reduction in ICa,L alone can account for most of the morphological features of the AFAP. Inhibition of Ito by 90% leads to a reduction in APD measured at -60 mV in both the NAP and AFAP. Inhibition of the rapid component of the delayed rectifier (IKr) by 90% slows terminal repolarization of the NAP and AFAP and increases APD by 38% and 34%, respectively. Inhibition of IKur by 90% slows early repolarization and increases plateau height, activating additional IK and causing no net change in APD at 1 Hz in the NAP. In the presence of AF-induced ionic modifications, IKur inhibition increases APD by 12%. Combining IKur and IKr inhibition under both normal and AF conditions synergistically increases APD. In the NAP, altering the model parameters to reproduce other typical measured AP morphologies can significantly alter the response to K(+)-channel inhibition. CONCLUSIONS: (1) The described abnormalities in Ito, IKur and ICa,L in AF patients can account for the effects of AF on human AP properties; (2) AP prolongation by IKur block is limited by increases in plateau height that activate more IK; (3) Blockers of IKur may be more effective in prolonging APD in patients with AF; 4) Inhibition of both IKur and IKr produces supra-additive effects on APD. These observations illustrate the importance of secondary current alterations in the response of the AP to single channel blockade, and have potentially important implications for the development of improved antiarrhythmic drug therapy for AF.  相似文献   

2.
Li D  Zhang L  Kneller J  Nattel S 《Circulation research》2001,88(11):1168-1175
Experimental and clinical evidence suggests a critical role for the left atrium (LA) in atrial fibrillation (AF). In animal models, repolarization is faster in the LA than in the right atrium (RA), leading to more stable reentry circuits with a shorter intrinsic period in the LA. The ionic mechanisms underlying LA-RA repolarization differences are unknown. Therefore, we evaluated ionic currents and action potentials (APs) with the whole-cell patch clamp in isolated canine atrial myocytes. The density of the rapid delayed rectifier current (I(Kr)) was greater in the LA (eg, 1.83+/-0.10 pA/pF at +20 mV) than in the RA (1.15+/-0.07 pA/pF, P<0.01; n=16 cells per group). The slow and ultrarapid delayed rectifier, the inward rectifier, L-type Ca(2+), and transient outward K(+) currents were all comparable in the LA and RA. There were no differences in kinetic or voltage-dependent properties of currents in LA versus RA. Western blots of ether-a-go-go-related gene (ERG) protein in three RA and corresponding LA regions showed significantly greater ERG expression in LA. AP duration (APD) was shorter in the LA versus RA in both isolated cells and multicellular preparations, and the effective refractory period (ERP) was shorter in the LA compared with the RA in vivo. Dofetilide had significantly larger APD- and ERP-increasing effects in the LA compared with RA, and LA-RA repolarization differences were eliminated by exposure to dofetilide. We conclude that LA myocytes have larger I(Kr) than do RA myocytes, contributing importantly to the shorter APD and ERP in LA. The larger LA I(Kr) may participate in the ability of the LA to act as a "driver region" for AF, with potentially important implications for understanding AF mechanisms and antiarrhythmic therapy.  相似文献   

3.
OBJECTIVE: Although the incidence of atrial fibrillation (AF) increases with age, the cellular electrophysiological changes that render the atria of aged individuals more susceptible to AF remain poorly understood. We hypothesized that dispersion of atrial repolarization increases with aging, creating a substrate for initiation of AF. METHODS: Four groups of dogs were studied: adult and old dogs in normal sinus rhythm (SR) and adult and old dogs with chronic AF (CAF) induced by rapid atrial pacing. In each dog, action potentials (AP) were recorded with microelectrodes from isolated endocardial preparations of four regions of right atrium and three regions of left atrium. Two indices of AP duration (APD) heterogeneity were obtained in each dog by calculating standard deviation (SD) and the coefficient of variation (COV=[SD/mean] x 100%). RESULTS: In SR groups, APD averaged across all regions was significantly longer in old than in adult tissues. Both indices of APD heterogeneity were higher in old dogs in comparison to adult. At both ages, CAF was associated with significant APD shortening and a decrease in APD adaptation to rate. While CAF significantly increased both indices of APD heterogeneity in adult dogs, it significantly decreased them in old dogs. CONCLUSIONS: The increase of spatial variability in repolarization in old atria may contribute to the initiation of AF in the aged. CAF-induced APD shortening and a decrease in APD adaptation appear to be important for the maintenance of sustained AF in both adult and old atria. The CAF-induced increase in dispersion of repolarization may be important for AF stabilization in adults, while previously reported fibrosis and slowed conduction of premature beats may be important in the old for both AF initiation during SR and subsequent stabilization of AF.  相似文献   

4.
Cardiac action potentials (APs) are driven by ionic currents flowing through specific channels and exchangers across cardiomyocyte membranes. Once initiated by rapid Na(+) entry during phase 0, the AP time course is determined by the balance between inward depolarizing currents, carried mainly by Na(+) and Ca(2+), and outward repolarizing currents carried mainly by K(+). K(+) currents play a major role in repolarization. The loss of a K(+) current can impair repolarization, but there is a redundancy of K(+) currents so that when one K(+) current is dysfunctional, other K(+) currents increase to compensate, a phenomenon called 'repolarization reserve'. Repolarization reserve protects repolarization under conditions that increase inward current or reduce outward current, threatening the balance that governs AP duration. This protection comes at the expense of reduced repolarization reserve, potentially resulting in unexpectedly large AP prolongation and arrhythmogenesis, when an additional repolarization-suppressing intervention is superimposed. The critical role of appropriate repolarization is such that cardiac rhythm stability can be impaired with either abnormally slow or excessively rapid repolarization. In cardiac disease states such as heart failure and atrial fibrillation (AF), changes in ion channel properties appear as part of an adaptive response to maintain function in the face of disease-related stress on the cardiovascular system. However, if the stress is maintained the adaptive ion channel changes may themselves lead to dysfunction, in particular cardiac arrhythmias. The present article reviews ionic remodelling of cardiac repolarization, and focuses on how potentially adaptive repolarization changes with congestive heart failure and AF can have arrhythmogenic consequences.  相似文献   

5.
6.
OBJECTIVE: To investigate changes in human atrial single cell functional electrophysiological properties associated with chronic atrial fibrillation (AF), and the contribution to these of accompanying ion current changes. METHODS: The whole cell patch clamp technique was used to record action potentials, the effective refractory period (ERP) and ion currents, in the absence and presence of drugs, in enzymatically isolated myocytes from 11 patients with chronic (>6 months) AF and 39 patients in sinus rhythm. RESULTS: Stimulation at high rates (up to 600 beats/min) markedly shortened late repolarisation and the ERP in cells from patients in sinus rhythm, and depolarised the maximum diastolic potential (MDP). Chronic AF was associated with a reduction in the ERP at physiological rate (from 203+/-16 to 104+/-15 ms, P<0.05), and marked attenuation in rate effects on the ERP and repolarisation. The abbreviated terminal phase of repolarisation prevented fast rate-induced depolarisation of the MDP in cells from patients with AF. The density of L-type Ca(2+) (I(CaL)) and transient outward K(+) (I(TO)) currents was significantly reduced in cells from patients with AF (by 60-65%), whilst the inward rectifier K(+) current (I(K1)) was increased, and the sustained outward current (I(KSUS)) was unaltered. Superfusion of cells from patients in sinus rhythm with nifedipine (10 micromol/l) moderately shortened repolarisation, but had no effect on the ERP (228+/-12 vs. 225+/-11 ms). 4-Aminopyridine (2 mmol/l) markedly prolonged repolarisation and the ERP (by 35%, P<0.05). However, the combination of these drugs had no effect on late repolarisation or refractoriness. CONCLUSION: Chronic AF in humans is associated with attenuation in adaptation of the atrial single cell ERP and MDP to fast rates, which may not be explained fully by accompanying changes in I(CaL) and I(TO).  相似文献   

7.
Atrial fibrillation (AF) is one of the most frequent cardiac arrhythmia and is associated with increased cardiovascular morbidity and mortality, and the risk of stroke. Although currently available antiarrhythmic drugs are moderately effective in restoring normal sinus rhythm in patients with AF, excessive delay of ventricular repolarization by these agents may be associated with increased risk of proarrhythmia. Therefore, selective blockers of cardiac ion channel(s) that are exclusively present in the atria are highly desirable. NIP‐142 is a novel benzopyrane derivative, which blocks potassium, calcium, and sodium channels and shows atrial specific action potential duration prolongation. NIP‐142 preferentially blocks the ultrarapid delayed rectifier potassium current (IKur) and the acetylcholine‐activated potassium current (IKACh). Since IKur and IKACh have been shown to be expressed more abundantly in the atrial than in the ventricular myocardium, the atrial‐specific repolarization prolonging effect of NIP‐142 is considered to be due to the blockade of these potassium currents. In canine models, NIP‐142 was shown to terminate the microreentry type AF induced by vagal nerve stimulation and the macroreentry type atrial flutter induced by an intercaval crush. These effects of NIP‐142 have been attributed to the prolongation of atrial effective refractory period (ERP), because this compound prolonged atrial ERP without affecting intraatrial and interatrial conduction times in these models. The ERP prolongation by NIP‐142 was greater in the atrium than in the ventricle. NIP‐142 also terminated the focal activity type AF induced by aconitine. In addition, NIP‐142 reversed the atrial ERP shortening and the loss of rate adaptation induced by short‐term rapid atrial pacing in anesthetized dogs. Thus, although clinical trials are required to provide evidence for its efficacy and safety, the novel multiple ion channel blocker, NIP‐142, appears to be a useful agent for the treatment of several types of AF with a low risk of proarrhythmic activity.  相似文献   

8.
目的研究生理状态下及异丙肾上腺素灌流对兔界嵴(CT)与梳状肌(PM)细胞动作电位(AP)及钠电流(INa)、短暂外向钾电流(Ito)、L型钙电流(ICa-L)、延迟整流钾电流(IK)及内向整流性钾电流(IK1)的影响,探讨CT与房性心律失常的关系。方法酶解法分离兔CT及PM细胞,利用全细胞膜片钳技术,记录生理状态下及异丙肾上腺素灌流后CT与PM细胞AP及INa、Ito、ICa-L、IK及IK1的变化。结果①生理状态下,CT细胞动作电位时程(APD)较长,可见明显的平台期;PM细胞AP形态与普通心房肌细胞相似,1期复极迅速,平台期短,类似三角形。②生理状态下,CT细胞Ito电流密度比PM细胞明显降低(7.13±0.38 pA/pF vs 10.70±0.62 pA/pF,n=9,P<0.01),而INa、Ito、ICa-L、IK及IK1则无明显差别。③异丙肾上腺素灌流时CT与PM细胞APD20、APD50、APD90均延长(n=8,P<0.01);指令电位+50 mV时,CT与PM细胞Ito电流密度均减少(n=9,P<0.01)而IK均增加(n=8,P<0.05);指令电位+10 mV时,CT与PM细胞ICa-L电流密度均增加(n=9,P<0.01);IK1在两种心肌细胞均无明显差异。结论 CT与PM细胞AP差异与Ito有关。异丙肾上腺素灌流时ICa-L与IK增强,Ito抑制使CT与PM细胞APD延长,触发机制可能是CT参与房性心律失常的机制之一。  相似文献   

9.
目的探讨在异丙肾上腺素(ISO)诱导下,兔心房肌细胞L型钙电流(ICa,L)与钙离子激活氯电流(ICl,Ca)之间的变化以及心房肌细胞动作电位(AP)复极相的特征性变化。方法用酶解法分离兔心房肌细胞。全细胞膜片钳技术记录所需离子电流和AP。结果(1)在记录到ICa,L后,加入1μmol/LISO5min,可引出一个非常明显的外向电流,并随着钳制电压的增加,ICa,L峰值逐步减小,而外向电流峰值逐步增加。3mmol/L的4氨基吡啶对这种外向电流不起作用。但150μmol/L的4,4异二硫氮氐2,2′二磺酸可抑制这种外向电流,而几乎只剩下ICa,L。200μmol/L钙通道阻滞剂CdCl2可阻断ICa,L和外向电流。表明该实验在加入ISO后引出最初的内向电流ICa,L之后,被激活的外向电流为ICl,Ca,诱发率为91.67%(P<0.05)。(2)在电流钳制下引出AP后,1μmol/LISO可使正常情况下的AP平台没有,AP呈三角形的尖锥峰形。AP时程的APD50和APD90明显缩短,与对照组相比,分别缩短了80.46%和71.87%,差异有统计学意义。3mmol/L的4氨基吡啶对该AP三角形的尖锥峰几乎没有作用;但4,4异二硫氮氐2,2′二磺酸(150μmol/L)使AP平台得以恢复,与对照组相比,差异无统计学意义。表明正常的心房肌细胞在ISO作用下,与形成AP复极相有关的1相和2相的离子转运发生了改变,Ito2对心房肌细胞AP1相形成起着重要作用。结论兔心房肌细胞在原本只被记录ICa,L情况下,经ISO干预后,细胞内某离子浓度发生了改变,细胞膜上离子通道的开放发生了重新变化,钙离子激活Cl-通道,Ito2表现出了明显优势,使AP时程明显缩短,AP呈三角形的尖锥峰形而无明显平台,心房肌细胞发生了离子通道电重构。离子通道电重构可能起自于ISO诱导的L型钙通道激活氯离子通道开放增加,并且ICa,L降低。这可能揭示离子通道电重构发生的一种机制。也为探讨实验性房性心律失常发生机制提供了又一证据。  相似文献   

10.
The incidence of atrial fibrillation (AF) increases with age. Alterations in structure and function of atrial ion channels associated with aging provide the substrate for AF. In this review we provide an overview of current knowledge regarding these age-related changes in atria, focusing on intrinsic ion channel function, impulse initiation and conduction. Studies on the action potentials (APs) of atria have shown that the AP contour is altered with age and the dispersion of AP parameters is increased with age. However, studies using human tissues are not completely consistent with experimental animal studies, since specimens from humans have been obtained from hearts with concomitant cardiovascular diseases and/or that are under the influence of pharmacologic agents. Ionic current studies show that while there are no age-related changes in sodium currents in atrial tissue, the calcium current is reduced and the transient outward and sustained potassium currents are increased in aged cells. While sinoatrial node firing is reduced with age, enhanced impulse initiation may occur in aged atrial cells, for example in the pulmonary veins and coronary sinus. Fibrous tissue is increased in aged atria, which is associated with an increased likelihood of abnormal electrical conduction. Thus, age-related AF involves alterations in the substrate as well as in the passive properties of aged atria. Supported by grant HL58860 and HL66140 from the National Heart Lung and Blood Institute Bethesda, Maryland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号