首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
消化系恶性肿瘤病人LAK细胞和NK细胞功能与表型的变化   总被引:2,自引:0,他引:2  
通过观察20例正常人和24例消化系恶性肿瘤病人外周血自然杀伤细胞(NK)和淋巴因子激活的杀伤细胞(LAK)的活性变化,以及加用重组白细胞介素2(rIL-2)刺激前后T淋巴细胞表型变化。结果发现肿瘤病人的NK细胞活性明显下降,但经rIL-2激活后LAK细胞活性得到明显提高,其溶解率接近正常水平。肿瘤病人的总T淋巴细胞(CD_(3+))和辅助/诱导T淋巴细胞(CD_(4+))水平低于正常,但抑制/杀伤淋巴细胞(CD_(8+))水平正常。辅助/诱导淋巴细胞与抑制/杀伤淋巴细胞之比为1.18,低于正常水平(1.55)。经加入rIL-2培养后,CD_(3+)和CD_(8+)淋巴细胞的比率明显升高并达正常水平。而在正常人此变化不明显,且加用rIL-2培养与不加者无显著差异。IL-2受体的表达正常人与肿瘤病人无异。结果显示胃肠道恶性肿瘤病人的免疫机制受到抑制,但能被IL-2提高至正常水平。  相似文献   

2.
Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases.Telomeres are the ribonucleoprotein structures that cap and protect linear chromosome ends from genomic instability and tumorigenesis (1, 2). Intriguingly, telomere shortening protects against tumorigenesis by limiting cell growth (3, 4), but also can impair tissue regenerative capability and cell viability (5, 6).Thus far, most assays of telomere length measure average telomere length from aggregates of many cells derived from dissected tissues, cultured cells, or blood (7). Telomere restriction fragment (TRF) determination (1, 8), a Southern blot-based technique, remains the “gold standard” for determining absolute telomere length, but requires a large amount of starting material (0.5–5 µg DNA) and several days for processing. Moreover, the requirements for gel electrophoresis and hybridization limit the scalability of this assay. Recently, a quantitative PCR (qPCR)-based method for telomere length measurement was developed, providing the convenience and scalability of PCR (9). Although the DNA requirement (35 ng) for qPCR is significantly less than TRF, it still relies on populations of cells to derive sufficient amount of DNA.Quantitative FISH (Q-FISH) allows sensitive visualization of relative telomere length from individual cells and individual telomeres, but this method requires many cells or metaphase arrested cells, which precludes its application to many sample types, including postmitotic cells, senescent cells, and other nondividing cells, and when only one actual cell is required to test. In addition, preparing chromosome spreads requires significant technical skill, and only proliferating cells within a population reach metaphase stage, so this analysis potentially biases the estimates of telomere length for a given cell population (1012). High-throughput Q-FISH, flow FISH, and single telomere length analysis can be used for telomere measurement of dividing, nondividing, and senescent cells, but these methods also require large cell populations (1315).The ability to measure telomere length in single cells rather than relying upon average telomere length in cell populations or the entire tissue enables the study of biological heterogeneity on a cell-by-cell basis, an issue of fundamental importance for studies of aging, development, carcinogenesis, and many other diseases. Here, we demonstrate an accurate determination of telomere length in individual cells, with the resolution and scalability of the qPCR telomere length assay.The basis of qPCR is that within a given cell, the ratio of the copy number of telomere repeats to the copy number of a multicopy reference gene is fixed (3), and this method, because of its simplicity, has been widely used to investigate a variety of telomere shortening-associated diseases (7), even sensitive enough to identify mild telomere dysfunction resulting from chronological life stress (16, 17). We adapted qPCR to measure telomere length in individual cells by using a preamplification step that specifically targets both the telomere and multicopy genes, followed by a qPCR assay to obtain telomere to reference gene (T/R) ratio. A single-cell telomere (SCT) length measurement method (SCT-pqPCR) runs robustly, and shows an identical T/R ratio for two sister blastomeres from two-cell–stage mouse embryos. The average result from SCT-qPCR with multiple single cells is linearly correlated to Q-FISH, TRF, and conventional qPCR assays designed for a large number of cells. The heterogeneity of telomere length among several populations of cells by SCT-pqPCR run on multiple single cells is consistent with—and sometimes superior to—results obtained by Q-FISH. Application of SCT-pqPCR to study telomere length during early embryo development, aging, and cancer demonstrate the value of this single-cell telomere length assay method.  相似文献   

3.
It has been shown that dendritic cells (DCs) are able to present glycolipids to natural killer (NK) T cells in vivo. However, the essential role of DCs, as well as the role of other cells in glycolipid presentation, is unknown. Here, we show that DCs are the crucial antigen-presenting cells (APCs) for splenic NK T cells, whereas Kupffer cells are the key APCs for hepatic NK T cells. Both cell types stimulate cytokine production by NK T cells within 2 h of glycolipid administration, but only DCs are involved in the systemic, downstream responses to glycolipid administration. More specifically, CD8alpha+ DCs produce IL-12 in response to glycolipid presentation, which stimulates secondary IFN-gamma production by NK cells in different organs. Different APCs participate in glycolipid presentation to NK T cells in vivo but differ in their involvement in the overall glycolipid response.  相似文献   

4.
The propagation of cell shape across generations is remarkably robust in most bacteria. Even when deformations are acquired, growing cells progressively recover their original shape once the deforming factors are eliminated. For instance, straight-rod-shaped bacteria grow curved when confined to circular microchambers, but straighten in a growth-dependent fashion when released. Bacterial cell shape is maintained by the peptidoglycan (PG) cell wall, a giant macromolecule of glycan strands that are synthesized by processive enzymes and cross-linked by peptide chains. Changes in cell geometry require modifying the PG and therefore depend directly on the molecular-scale properties of PG structure and synthesis. Using a mathematical model we quantify the straightening of curved Caulobacter crescentus cells after disruption of the cell-curving crescentin structure. We observe that cells straighten at a rate that is about half (57%) the cell growth rate. Next we show that in the absence of other effects there exists a mathematical relationship between the rate of cell straightening and the processivity of PG synthesis—the number of subunits incorporated before termination of synthesis. From the measured rate of cell straightening this relationship predicts processivity values that are in good agreement with our estimates from published data. Finally, we consider the possible role of three other mechanisms in cell straightening. We conclude that regardless of the involvement of other factors, intrinsic properties of PG processivity provide a robust mechanism for cell straightening that is hardwired to the cell wall synthesis machinery.  相似文献   

5.
6.
Heart failure is a major cause of mortality worldwide with a steady increase in prevalence. There is currently no available cure beyond orthotopic heart transplantation, which for a number of reasons is an option only for a small fraction of all patients. Considerable hope has therefore been placed on the possibility of treating a failing heart by replacing lost cardiomyocytes, either through transplantation of various types of stem cells or by boosting endogenous regenerative mechanisms in the heart. Here, we review the current status of stem and progenitor cell‐based therapies for heart disease. We discuss the pros and cons of different stem and progenitor cell types that can be considered for transplantation and describe recent advances in the understanding of how cardiomyocytes normally differentiate and how these cells can be generated from more immature cells ex vivo. Finally, we consider the possibility of activation of endogenous stem and progenitor cells to treat heart failure.  相似文献   

7.
8.
特应性皮炎是慢性复发性炎症性皮肤疾病,发病机制复杂,其中变态反应因素在发病机制中扮演着重要角色。目前认为Th1/Th2平衡失调是特应性皮炎重要的发病机制。本文围绕这一机制综述T细胞、树突状细胞、角质形成细胞及IgE在特应性皮炎发病机制中的作用。  相似文献   

9.
Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.  相似文献   

10.
Homozygous expression of sickle beta-globin alters the function of blood cells and the endothelium, producing a wide spectrum of clinical manifestations. Intravital microscopy studies in sickle cell mice suggest that vasoocclusion is a complex, sequential, multistep phenomenon involving (1) endothelial activation by sickle erythrocyte (SSRBC), (2) leukocyte (WBC) adhesion to the endothelium, and (3) the direct interaction between SSRBCs and adherent WBCs, which leads to reduced blood flow and tissue ischemia. Each of these steps represents a potentially useful therapeutic target. The identification of molecular determinants mediating vasoocclusion will provide new strategies for the prevention and treatment of this debilitating illness.  相似文献   

11.
Sertoli cell produces several biological factors that modulate Leydig cell steroidogenic function by either stimulating or inhibiting its testosterone production. We have evaluated the effect of an inhibitory factor in the spent media of a Sertoli clonal cell line (TM4) which inhibits Leydig cell steroidogenesis. The presence of such an inhibitory factor in TM4 media was bioassayed using Percoll purified Leydig cells isolated from adult rats with purity of greater than 95%. TM4 media inhibited both human chorionic gonadotropin (hCG)-stimulated testosterone and cAMP production by purified Leydig cells dose-dependently but had no apparent effect on 8-bromo-cAMP- and forskolin-stimulated testosterone production. Also it did not interfere with the binding of [125I]hCG to Leydig cells. TM4 media inhibited cholera toxin-stimulated testosterone production as well as forskolin- and cholera toxin-stimulated cAMP production. The mechanism of action of this factor in TM4 media appears to be different from transforming growth factor (TGF-β) which inhibited both 8-bromo-cAMP- and forskolin-stimulated testosterone production and inhibited the binding of [125I]hCG binding to Leydig cells. The inhibitory factor contained in TM4 media has been partially purified by sequential preparative anion exchange and C-18 reversed-phase high-performance liquid chromatography. In summary, the Sertoli TM4 cell line produces at least one potent inhibitory factor which decreases the responsiveness of purified Leydig cells to hCG stimulation with a dramatically different mechanism from other currently known Leydig cell inhibitory factors; this protein may serve as a valuable tool to study testicular paracrine regulation.  相似文献   

12.
单细胞测序在单个细胞水平研究细胞异质性以及生物多样性。与传统测序研究群体细胞基因的平均变化相比,充分展现了单个细胞间的差异性。近几年来,单细胞测序技术为单个细胞水平研究细胞命运谱系、动态分析细胞异质性、寻找心血管疾病治疗的新靶点、明确干细胞移植标准等提供了有力的帮助。本文介绍了单细胞测序的主要类型,并结合其在心血管研究方面的应用进行了综述。  相似文献   

13.
14.
We collected venous blood samples from 7 steady-state patients with homozygous sickle cell disease under venous oxygen pressure without exposure to air (UnExp-blood) and compared the morphological, oxygen-binding, and sickling properties with those of SS cells in aliquots of the same venous blood samples that were oxygenated in room air or at a PO2 near 180 mmHg (Exp-blood). Results showed that (1) upon deoxygenation under nitrogen, UnExp-blood generated a significantly higher percentage of elongated reversibly sickled cells (RSCs) than did Exp-blood; (2) upon gradual oxygenation of completely deoxygenated sickled cells, RSCs in UnExp-blood converted to discocytes at a higher oxygen pressure than did those in Exp-blood; (3) the degree of hysteresis between the sickling/desickling curves of UnExp-blood was greater than that of Exp-blood; and (4) deoxy-Hb S in hemolysate prepared from SS cells in UnExp-blood polymerized without a delay time, while those from Exp-blood polymerized with a distinct delay time. The in vivo properties of RSCs significantly changed upon oxygenation. We also found that the various properties of blood samples collected from patients with SCD by the ordinary method were similar to those of Exp-blood, probably because such blood samples are exposed to oxygen through air in the needle, syringe, and Vacutainer. Once SS cells were oxygenated, the in vivo properties of RSCs could not be recovered by partial deoxygenation to venous oxygen pressure.  相似文献   

15.
低碘大鼠垂体前叶细胞免疫组化观察   总被引:1,自引:0,他引:1  
用免疫组织化染色PAP法,对低碘大鼠垂体前叶道TSH,GH,ACTH分泌激素细胞进行了观察及立体定量分析,结果显示TSH细胞数量增加,个别细胞体积增大,细胞变性明显,GH细胞数量减少,细胞谱性,ACTH细胞定量分析结果与对照组相比差异无显性。  相似文献   

16.
采用HE染色和免疫组化方法结合生物体视学技术,对链脲佐菌素诱导的糖尿病大鼠在胃底腺的壁细胞和幽门部胃粘膜的G细胞进行立体计量研究。结果显示:糖尿病状态的早期,壁细胞和G细胞的体积均明显增大,数量却显著减少。根据正常情况下壁细胞和G细胞的细胞动力学变化、胃泌素的生物学作用和上述实验结果,认为大鼠胃底腺峡部的干细胞向壁细胞分化成熟的功能及G细胞的分裂增殖活动,在胰岛素缺乏的情况下受到一定程度的抑制,而这种功能的抑制是糖尿病状态下易出现胃粘膜萎缩、胃酸分泌减少和胃轻瘫的重要原因之一。  相似文献   

17.
骨髓干细胞移植在心血管疾病中的应用   总被引:7,自引:0,他引:7  
近年来的研究表明,骨髓干细胞向心肌细胞分化已成为可能,动物模型及临床应用均证实,将骨髓干细胞移植于受损心肌可改善心肌缺血及心脏功能。  相似文献   

18.
Background and Aim:  MicroRNAs are a class of small non-coding RNAs that negatively regulate the expression of their target genes. The aim of the present study was to explore the effects of microRNA on biological behaviors of HepG2 cells and further analyze its characteristics.
Methods:  We detected different expression profiles of miRNAs in HepG2 and L02 cell lines by microRNA microarray. Northern blot, quantitative real-time polymerase chain reaction, methylthiazolyl tetrazolium, fluorescence-activated cell sorting, scratch wound, transwell migration and Matrigel invasion assays and western blot were carried out to determine whether or not microRNA-224 ( miR-224 ) can influence the biological behaviors of HepG2 cells.
Results:  MiR-224 was significantly upregulated in HepG2 cells. Cell proliferation, migration and invasion, but not cell cycles, were altered after changing the expression of miR-224 . Taking invasion and migration as a breakthrough, a close relationship between the expression of miR-224 and its proteins such as PAK 4 and MMP9 , which were involved in the invasion of tumor, was found.
Conclusions:  Overexpression of miR-224 was involved in the malignant phenotype of HepG2 cells, and it may be an important factor in regulating the migration and invasion of HepG2 cells.  相似文献   

19.
Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin+ cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号