首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
2.
Yeast has been a valuable model to study replicative and chronological ageing processes. Replicative ageing is defined by the number of daughter cells a mother can give birth to and hence reflects the ageing situation in proliferating cells, whereas chronological ageing is widely accepted as a model for postmitotic tissue ageing. Since both ageing forms end in yeast programmed death (necrotic and apoptotic), and abrogation of cell death by deletion of the apoptotic machinery or diminishment of oxidative radicals leads to longevity, apoptosis and ageing seem closely connected. This review focuses on ageing as a physiological way to induce yeast apoptosis, which unexpectedly defines apoptosis as a pro- and not an anti-ageing mechanism.  相似文献   

3.
A competitive growth assay has been used to identify yeast genes involved in the repair of UV- or MMS-induced DNA damage. A collection of 2,827 yeast strains was analyzed in which each strain has a single ORF replaced with a cassette containing two unique sequence tags, allowing for its detection by hybridization to a high-density oligonucleotide array. The hybridization data identify a high percentage of the deletion strains present in the collection that were previously characterized as being sensitive to the DNA-damaging agents. The assay, and subsequent analysis, has been used to identify six genes not formerly known to be involved in the damage response, whose deletion renders the yeast sensitive to UV or MMS treatment. The recently identified genes include three uncharacterized ORFs, as well as genes that encode protein products implicated in ubiquitination, gene silencing, and transport across the mitochondrial membrane. Epistatsis analysis of four of the genes was performed to determine the DNA damage repair pathways in which the protein products function.  相似文献   

4.
The biological reasons for ageing are now well known, so it is no longer an unsolved problem in biology. Furthermore, there is only one science of ageing, which is continually advancing. The significance and importance of the mutations that lengthen the lifespan of invertebrates can be assessed only in relationship to previous well-established studies of ageing. The mutant strains of model organisms that increase longevity have altered nutrient signalling pathways similar to the effects of dietary restriction, and so it is likely that there is a shift in the trade-off between reproduction and maintenance of the soma. To believe that the isolation and characterisation of a few invertebrate mutations (as well as those in yeast) will “galvanise” the field and provide new insights into human ageing is an extreme point of view which does not recognize the huge progress in ageing research that has been made in the last 50 years or so.  相似文献   

5.
Positive-strand RNA viruses are the largest virus class and include many pathogens such as hepatitis C virus and the severe acute respiratory syndrome coronavirus (SARS). Brome mosaic virus (BMV) is a representative positive-strand RNA virus whose RNA replication, gene expression, and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. By using traditional yeast genetics, host genes have been identified that function in controlling BMV translation, selecting BMV RNAs as replication templates, activating the replication complex, maintaining a lipid composition required for membrane-associated RNA replication, and other steps. To more globally and systematically identify such host factors, we used engineered BMV derivatives to assay viral RNA replication in each strain of an ordered, genome-wide set of yeast single-gene deletion mutants. Each deletion strain was transformed to express BMV replicase proteins and a BMV RNA replication template with the capsid gene replaced by a luciferase reporter. Luciferase expression, which is dependent on viral RNA replication and RNA-dependent mRNA synthesis, was measured in intact yeast cells. Approximately 4500 yeast deletion strains ( approximately 80% of yeast genes) were screened in duplicate and selected strains analyzed further. This functional genomics approach revealed nearly 100 genes whose absence inhibited or stimulated BMV RNA replication and/or gene expression by 3- to >25-fold. Several of these genes were shown previously to function in BMV replication, validating the approach. Newly identified genes include some in RNA, protein, or membrane modification pathways and genes of unknown function. The results further illuminate virus and cell pathways. Further refinement of virus screening likely will reveal contributions from additional host genes.  相似文献   

6.
As a tool for measuring the aging process, life span has been invaluable in dissecting the genes that modulate longevity. Studies over the past few decades have identified several hundred genes that can modify life span in model organisms such as yeast, worms, and flies. Yet, despite this vast amount of research, we still do not fully understand how the genes that affect life span influence how an organism ages. How does modulation of the genes that affect life span contribute to the aging process? Does life-span extension result in extension of healthy aging? Here, we will focus primarily on the insulin/IGF-1 signaling pathway in Caenorhabditis elegans because members of this pathway have been shown to be associated with extended life span across phylogeny, from worms to humans. I discuss how this connects to the aging process, age-associated disease, and the potential to increase healthy aging in addition to lengthening life span.  相似文献   

7.
We have performed a genome-wide analysis of copy number changes in breast and colorectal tumors using approaches that can reliably detect homozygous deletions and amplifications. We found that the number of genes altered by major copy number changes, deletion of all copies or amplification to at least 12 copies per cell, averaged 17 per tumor. We have integrated these data with previous mutation analyses of the Reference Sequence genes in these same tumor types and have identified genes and cellular pathways affected by both copy number changes and point alterations. Pathways enriched for genetic alterations included those controlling cell adhesion, intracellular signaling, DNA topological change, and cell cycle control. These analyses provide an integrated view of copy number and sequencing alterations on a genome-wide scale and identify genes and pathways that could prove useful for cancer diagnosis and therapy.  相似文献   

8.
9.
10.
The genetics of human longevity   总被引:10,自引:0,他引:10  
Many of the genes that affect aging and longevity in model organisms, such as mice, fruit flies, and worms, have human homologs. This article reviews several genetic pathways that may extend lifespan through effects on aging, rather than through effects on diseases such as atherosclerosis or cancer. These include some of the genes involved in the regulation of DNA repair and nuclear structure, which cause the progeroid syndromes when mutated, as well as those that may affect telomere length, since shorter telomeres have been associated with shorter survival. Other potential longevity genes, such as sirtuins, are involved in regulating the response to cellular stress, including caloric restriction. The best-studied pathway involves insulin and insulin-like growth factor 1 signaling; mutations in homologs of these genes have extended lifespan up to sixfold in model organisms. Other potential candidates include mitochondrial DNA and the genes that regulate the inflammatory response. Despite the challenges in study design and analysis that face investigators in this area, the identification of genetic pathways that regulate longevity may suggest potential targets for therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号