首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Eosinophils are short-lived and comprise only a small population of circulating leukocytes; however, they play surprisingly multifunctional roles in homeostasis and various diseases including allergy and infection. Recent research has shed light on active cytolytic eosinophil cell death that releases eosinophil extracellular traps (EETs) and total cellular contents, namely eosinophil extracellular trap cell death (EETosis). The pathological contribution of EETosis was made more cogent by recent findings that a classical pathological finding of eosinophilic inflammation, that of Charcot-Leyden crystals, is closely associated with EETosis. Currently no gold standard methods to identify EETosis exist, but “an active eosinophil lysis that releases cell-free granules and net-like chromatin structure” appears to be a common feature of EETosis. In this review, we describe several approaches that visualize EETs/EETosis in clinical samples and in vitro studies using isolated human eosinophils. EETs/EETosis can be observed using simple chemical or fluorescence staining, immunostaining, and electron microscopy, although it is noteworthy that visualization of EETs is greatly changed by sample preparation including the extracellular space of EETotic cells and shear flow. Considering the multiple aspects of biological significance, further study into EETs/EETosis is warranted to give a detailed understanding of the roles played in homeostasis and disease pathogenesis.  相似文献   

2.
Interleukin (IL)-24 is a member of the IL-20 family of cytokines and is produced by various types of cells, such as CD4+ T cells, NK cells, mast cells, keratinocytes, bronchial epithelial cells, and myofibroblasts. Previous studies suggest that IL-24 plays an essential role in the pathogenesis of pro-inflammatory autoimmune disorders such as psoriasis, arthritis, and inflammatory bowel diseases. However, the role of IL-24 in the pathogenesis of allergic diseases has been elusive. It has already been reported that IL-24 is involved in the pathogenesis of allergic lung and skin diseases. Moreover, we have recently revealed for the first time the pivotal functions of IL-24 in IL-13–mediated skin barrier dysfunction in atopic dermatitis (AD), which is known to be a characteristic of AD caused by Th2 cytokines such as IL-4 or IL-13. In this review, we show recent advances in the basic characteristics of IL-24 and its novel functions in the pathogenesis of allergic skin inflammation, focusing on AD. A better understanding of the role of IL-24 in allergic diseases can lead to the development of new therapeutic options.  相似文献   

3.
Serum amyloid A is an acute-phase protein with multiple immunological functions. Serum amyloid A is involved in lipid metabolism, inflammatory reactions, granuloma formation, and cancerogenesis. Additionally, serum amyloid A is involved in the pathogenesis of different autoimmune lung diseases. The levels of serum amyloid A has been evaluated in biological fluids of patients with different lung diseases, including autoimmune disorders, chronic obstructive pulmonary diseases, obstructive sleep apnea syndrome, sarcoidosis, asthma, lung cancer, and other lung disorders, such as idiopathic pulmonary fibrosis, tuberculosis, radiation pneumonitis, and cystic fibrosis. This review focuses on the cellular and molecular interactions of serum amyloid A in different lung diseases and suggests this acute-phase protein as a prognostic marker.  相似文献   

4.
5.
Zinc is an essential micronutrient in human body and a vital cofactor for the function of numerous proteins encoded by the human genome. Zinc has a critical role in maintaining many biochemical and physiological processes at the molecular, cellular, and multiple organ and systemic levels. The alteration of zinc homeostasis causes dysfunction of many organs and systems.In the immune system, zinc regulates the differentiation, proliferation and function of inflammatory cells, including T cells, eosinophils, and B cells, by modifying several signaling pathways such as NFκB signaling pathways and TCR signals. An adequate zinc level is essential for proper immune responses and decreased zinc levels were reported in many allergic inflammatory diseases, including atopic dermatitis, bronchial asthma, and chronic rhinosinusitis. Decreased zinc levels often enhance inflammatory activation. On the other hand, the inflammatory conditions alter the intracellular homeostasis of zinc, often decreasing zinc levels. These findings implied that there could be a vicious cycle between zinc deficiency and inflammatory conditions.In this review, we present recent evidence on the involvement of zinc in atopic dermatitis, bronchial asthma, and chronic rhinosinusitis, with insights into the involvement of zinc in the underlying molecular and cellular mechanisms related to these allergic inflammatory diseases.  相似文献   

6.
In October 2021, researchers from the German Society of Allergy and Clinical Immunology (DGAKI) and from the Japanese Society of Allergology (JSA) focused their attention on the pathological conditions and modifiers of various allergic diseases. Topics included 1) the pathophysiology of IgE/mast cell-mediated allergic diseases; 2) the diagnosis and prevention of IgE/mast cell-mediated diseases; 3) the pathophysiology, diagnosis, and treatment of eosinophilic airway diseases; and 4) host–pathogen interaction and allergic diseases. This report summarizes the panel discussions, which highlighted the importance of recognizing the diversity of genetics, immunological mechanisms, and modifying factors underlying allergic diseases.  相似文献   

7.
Biologics applying antibodies against IgE, IL-5, IL-5 receptor α, IL-4 receptor α, and IL-13 have dramatically improved recent treatment outcomes in allergic diseases including asthma, rhinitis, and atopic dermatitis. However, these drugs have not been approved for ocular allergic diseases such as allergic conjunctivitis, vernal keratoconjunctivitis, and atopic keratoconjunctivitis. Although the putative mechanisms suggest that these drugs should have beneficial effects in patients with ocular allergies and some studies have reported such beneficial effects, various adverse ocular symptoms have also been observed in clinical trials and off-label use studies. Since ocular allergic diseases have distinct pathogeneses, each biologic drug must be examined regarding specific effects on each ocular allergy. For example, IgE-mediated type 1 hypersensitivity plays a critical role in allergic conjunctivitis. By contrast, T cells and eosinophilic and non-IgE-mediated type 2 inflammation play important roles in vernal keratoconjunctivitis. Allergists must fully understand the effects of each drug on the eye. This review outlines both potential therapeutic and adverse effects of various biologics on allergic diseases of the eye.  相似文献   

8.
BackgroundAirway epithelial cells (AECs) play a crucial role in the induction and development of allergic inflammation through the development and activation of immune cells, including Th2 cells and ILC2s. Recent studies have revealed that STAT3 expressed in epithelial cells protects against pathogens and maintains homeostasis in the intestine. However, the roles of STAT3 in airway epithelium are poorly understood. Therefore, we sought to elucidate the roles of airway epithelial STAT3 in allergic airway inflammation.MethodsAllergic airway inflammation was induced by intratracheal administration of house dust mite (HDM) extract in doxycycline-induced AEC-specific STAT3-deficient (STAT3-cKO) mice and their genetic control (STAT3-WT) mice. Airway inflammation was evaluated by flow cytometric analysis of bronchoalveolar lavage fluid cells and histological analysis of the lung. Purified airway epithelial cells were analyzed by quantitative PCR and RNA-sequencing (RNA-seq).ResultsHDM-induced airway inflammation was exacerbated in STAT3-cKO mice compared with STAT3-WT mice. RNA-seq analyses revealed that Scd1, coding stearoyl-CoA desaturase 1, was most significantly upregulated in HDM-treated STAT3-WT mice compared to HDM-treated STAT3-cKO mice. Notably, the administration of an SCD1 inhibitor exacerbated HDM-induced airway inflammation. AECs of HDM-treated STAT3-cKO mice and those of HDM-treated SCD1 inhibitor-injected mice shared 45 differentially expressed genes (DEGs). Gene enrichment analysis of the DEGs revealed that the enriched ontology clusters included fatty acid biosynthetic process and regulation of lipid biosynthetic process, suggesting the involvement of the STAT3-SCD1-lipid metabolism axis in suppressing allergic inflammation.ConclusionsSTAT3 is crucial for suppressing HDM-induced allergic airway inflammation, possibly inducing SCD1 expression in AECs.  相似文献   

9.
Respiratory viruses like rhinovirus, influenza virus, respiratory syncytial virus, and coronavirus cause several respiratory diseases, such as bronchitis, pneumonia, pulmonary fibrosis, and coronavirus disease 2019, and exacerbate bronchial asthma, chronic obstructive pulmonary disease, bronchiectasis, and diffuse panbronchiolitis. The production of inflammatory mediators and mucin and the accumulation of inflammatory cells have been reported in patients with viral infection-induced respiratory diseases. Interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor, and regulated on activation normal T-cell expressed and secreted are produced in the cells, including human airway and alveolar epithelial cells, partly through the activation of toll-like receptors, nuclear factor kappa B and p44/42 mitogen-activated protein kinase. These mediators are associated with the development of viral infection-induced respiratory diseases through the induction of inflammation and injury in the airway and lung, airway remodeling and hyperresponsiveness, and mucus secretion. Medications used to treat respiratory diseases, including corticosteroids, long-acting β2-agonists, long-acting muscarinic antagonists, mucolytic agents, antiviral drugs for severe acute respiratory syndrome coronavirus 2 and influenza virus, macrolides, and Kampo medicines, reduce the production of viral infection-induced mediators, including cytokines and mucin, as determined in clinical, in vivo, or in vitro studies. These results suggest that the anti-inflammatory effects of these medications on viral infection-induced respiratory diseases may be associated with clinical benefits, such as improvements in symptoms, quality of life, and mortality rate, and can prevent hospitalization and the exacerbation of chronic obstructive pulmonary disease, bronchial asthma, bronchiectasis, and diffuse panbronchiolitis.  相似文献   

10.
BackgroundSmoking causes an influx of inflammatory cells including Langerhans cells (LCs) into the airways and lung parenchyma, thus inducing histological changes, such as emphysema and fibrosis. We examined the distribution and quantity of Langerhans cells in relation to clinical and pathological findings and explored the association between smoking and accumulation of Langerhans cells in the respiratory bronchioles.MethodsFifty-three patients who underwent lung resection for primary diseases, including lung cancer, were recruited. Histological and immunohistochemistry analyses were utilized to identify CD1a-positive Langerhans cells in peripheral lung specimens separated from primary lesions. Clinical characteristics, pathological changes, and distribution of CD1a-positive Langerhans cells distribution were assessed.ResultsOf the 53 patients, 35 were smokers and 18 were non-smokers. The number of Langerhans cells in the respiratory bronchioles was significantly increased in smokers as compared to that in non-smokers (p < 0.001). The number of Langerhans cells in smokers was significantly higher in patients with mild emphysema than in those without emphysema (p < 0.01). The high-LC group showed more frequent smoking-related histological changes, such as respiratory bronchiolitis, parenchymal fibrosis, accumulation of macrophages, and smoking-related interstitial fibrosis, than the low-LC group. However, there were no differences in the smoking indices and pulmonary functions of the groups.ConclusionsSelective accumulation of Langerhans cells in the respiratory bronchioles of smokers may lead to the development of smoking-related pathological changes.  相似文献   

11.
Age-related pathological alterations of the vasculature have a critical role in morbidity and mortality of older adults. In epidemiological studies, age is the single most important cardiovascular risk factor that dwarfs the impact of traditional risk factors. To develop novel therapeutic interventions for prevention of age-related vascular pathologies, it is crucial to understand the cellular and molecular mechanisms of vascular aging. In this review, shared molecular mechanisms of aging are considered in terms of their contribution to the pathogenesis of macrovascular and microvascular diseases associated with old age. The role of cellular senescence in development of vascular aging phenotypes is highlighted, and potential interventions to prevent senescence and to eliminate senescent cells for prevention of vascular pathologies are presented. The evidence supporting a role for interorgan communication and circulating progeronic and antigeronic factors in vascular aging is discussed.  相似文献   

12.
BackgroundAlveolar epithelial type 2 (AT2) cells serve as stem cells in alveolar epithelium and are assumed to lose their stem cell function in the lungs of chronic obstructive pulmonary disease (COPD). Although we previously reported that LHX9 mRNA expression was up-regulated in AT2 cells of COPD lung tissues, it is yet to be elucidated how LHX9 is associated with the vulnerability of AT2 cells in COPD.MethodsAT2 cells were isolated from lung tissues of 10 non-COPD subjects and 11 COPD patients. LHX9 mRNA expression was determined by quantitative RT-PCR. To identify up-stream molecules, an alveolar epithelial cell line A549 was exposed to pro-inflammatory cytokines in vitro. siRNA-mediated Lhx9 knockdown was performed to determine how Lhx9 affected the cellular viability and the cell-division cycle.ResultsLHX9 mRNA expression was increased in AT2 cells from COPD lung tissues, compared to those from non-COPD tissues. The airflow obstruction was independently correlated with the increase in LHX9 expression. Among several pro-inflammatory cytokines, interferon-γ was a strong inducer of LHX9 expression in A549 cells. Lhx9 was involved in the increased susceptibility to serum starvation-induced death of A549 cells.ConclusionsOur data suggest that IFN-γ predominantly increases the LHX9 expression which enhances the susceptibility to cell death. Considering the independent association of the increased LHX9 expression in AT2 cells with airflow obstruction, the IFN-γ-Lhx9 axis might contribute to the vulnerability of AT2 cells in the lungs of COPD patients.  相似文献   

13.
Transbronchial lung biopsy is a non-invasive technique used primarily for the pathological diagnosis of lymphangioleiomyomatosis (LAM). However, some cases, particularly those with early-stage lung lesions, are difficult to diagnose because of the specimen size and presence of artifacts. Herein, we present two cases of LAM with relatively mild cystic changes in the lungs and slight impairment seen in pulmonary function tests. Both patients were diagnosed pathologically through transbronchial lung cryobiopsy. These cases indicate that transbronchial lung cryobiopsy is a useful tool for diagnosing early-stage pulmonary LAM owing to its appropriate specimen size for detecting LAM cells and few crush artifacts.  相似文献   

14.
Bone marrow failure is characterized by a disruption of hematopoietic stem cell (HSC) homeostasis and function, which causes decreased blood counts. Germline and somatic mutations within HSCs and immune dysregulation contribute to the pathogenesis of marrow failure. Allogeneic HSC transplant is a potentially curative therapy for marrow failure, although not all patients are candidates for this procedure. Immune suppressive therapy (IST) is an effective treatment for patients with aplastic anemia (AA) and select patients with myelodysplastic syndromes, but some patients fail to respond or relapse after IST. Over the past decade, the oral thrombopoietin receptor agonist eltrombopag has become a therapeutic option for AA in combination with frontline IST, and as a single agent for relapsed and refractory patients after IST. In this review, we highlight current knowledge of thrombopoietin receptor agonist mechanisms of action, and clinical indications and toxicities in patients with marrow failure, including the risk of clonal evolution.  相似文献   

15.
Fibrosis is characterized by the deposition of extracellular matrix (ECM) proteins, while idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease characterized by dysregulated tissue repair and remodeling. Anti-inflammatory drugs, such as corticosteroids and immunosuppressants, and antifibrotic drugs, like pirfenidone and nintedanib, are used in IPF therapy. However, their limited effects suggest that single mediators are inadequate to control IPF. Therefore, therapies targeting the multifactorial cascades that regulate tissue remodeling in fibrosis could provide alternate solutions. ECM molecules have been shown to modulate various biological functions beyond tissue structure support and thus, could be developed into novel therapeutic targets for modulating tissue remodeling. Among ECM molecules, glycosaminoglycans (GAG) are linear polysaccharides consisting of repeated disaccharides, which regulate cell-matrix interactions. Chondroitin sulfate (CS), one of the major GAGs, binds to multifactorial mediators in the ECM and reportedly participates in tissue remodeling in various diseases; however, to date, its biological functions have drawn considerably less attention than other GAGs, like heparan sulfate. In the present review, we discuss the involvement and regulation of CS in tissue remodeling and pulmonary fibrotic diseases, its role in pulmonary fibrosis, and the therapeutic approaches targeting CS.  相似文献   

16.
17.
BackgroundAcute exacerbation of fibrosing interstitial lung diseases, including idiopathic pulmonary fibrosis, is associated with poor prognosis. Accordingly, tracheal intubation and invasive mechanical ventilation are generally avoided in such patients. However, the efficacy of invasive mechanical ventilation for acute exacerbation of fibrosing interstitial lung diseases remains unclear. Therefore, we aimed to investigate the clinical course of patients with acute exacerbation of fibrosing interstitial lung diseases who were treated with invasive mechanical ventilation.MethodsWe retrospectively analyzed 28 patients with acute exacerbation of fibrosing interstitial lung diseases who underwent invasive mechanical ventilation at our hospital.ResultsOf the 28 included patients (20 men, 8 women; mean age, 70.6 years), 13 (46.4%) were discharged alive and 15 died. Ten patients (35.7%) had idiopathic pulmonary fibrosis. Univariate analysis revealed that longer survival was significantly associated with lower partial pressure of arterial carbon dioxide (hazard ratio [HR] 1.04 [1.01–1.07]; p = 0.002) and higher pH (HR 0.0002 [0–0.02] levels; p = 0.0003) and less severe general status according to the Acute Physiology and Chronic Health Evaluation II score (HR 1.13 [1.03–1.22]; p = 0.006) at the time of mechanical ventilation initiation. In addition, the univariate analysis indicated that patients without long-term oxygen therapy use had significantly longer survival (HR 4.35 [1.51–12.52]; p = 0.006).ConclusionsInvasive mechanical ventilation may effectively treat acute exacerbation of fibrosing interstitial lung diseases if good ventilation and general conditions can be maintained.  相似文献   

18.
Abnormalities in the cardiac sympathetic nervous system have been documented in various heart diseases and have been directly implicated in their pathogenesis and disease progression. Noninvasive techniques using single-photon-emitting radiotracers for planar scintigraphy and single-photon emission computed tomography, and positron-emitting tracers for positron emissions tomography, have been used to characterize the cardiac sympathetic nervous system with norepinephrine analogs [123I]meta-iodobenzylguanidine for planar and single-photon emission computed tomography imaging and [11C]meta-hydroxyephedrine for positron emissions tomography. Their usefulness in prognostication and risk stratification for cardiac events has been demonstrated. This review bridges basic and clinical research and focuses on applying an understanding of tracer kinetics and neuronal biology, to aid in the interpretation of nuclear imaging of cardiac sympathetic innervation.  相似文献   

19.
20.
《Pancreatology》2020,20(7):1413-1420
Zinc is an essential trace element. Deficiencies are frequently seen with gastrointestinal diseases, including chronic pancreatitis, nutritional deficiency, and reduced intestinal absorption. Additionally, reduced zinc levels have been linked to cellular changes associated with acute pancreatitis such as enhanced inflammation with increased macrophage activation and production of inflammatory cytokines such as IL-1β, impaired autophagy, and modulation of calcium homeostasis. Preliminary data suggest that zinc deficiency may lead to pancreatic injury in animal models. The purpose of this review is to explore the biologic effects of zinc deficiency that could impact pancreatic disease.Mesh keywordsMalnutrition, inflammation, trace element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号