首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of high emissivity coatings on the radiative heat transfer in steam cracking furnaces is far from understood. To start, there is a lack of experimental data describing the emissive properties of the materials encountered in steam cracking furnaces. Therefore, spectral normal emissivity measurements are carried out, evaluating the emissive properties of refractory firebricks before and after applying a high emissivity coating at elevated temperatures. The emissive properties are enhanced significantly after applying a high emissivity coating. Pilot unit steam cracking experiments show a 5% reduction in fuel gas firing rate after applying a high emissivity coating on the refractory of the cracking cells. A parametric study, showing the effect of reactor coil and furnace wall emissive properties on the radiative heat transfer inside a tube-in-box geometry, confirms that a non-gray gas model is required to accurately model the behavior of high emissivity coatings. Even though a gray gas model suffices to capture the heat sink behavior of a reactor coil, a non-gray gas model that is able to account for the absorption and re-emission in specific bands is necessary to accurately model the benefits of applying a high emissivity coating on the furnace wall.  相似文献   

2.
Heat transfer under flow boiling is better in a rectangular channel filled with open-cell metal foam than in an empty channel, but the high pressure drop is a drawback of the empty channel method. In this study, various types of metal foam insert configurations were tested to reduce the pressure drop while maintaining high heat transfer. Specifically, we measured the boiling heat transfer and pressure drop of a two-phase vertical upward flow of R245fa inside a channel. To measure the pressure and temperature differences of the metal foam, differential pressure transducers and T-type thermocouples were used at both ends of the test section. While the saturation pressure was kept constant at 5.9 bar, the steam quality at the inlet of the test section was changed from 0.05 to 0.99. The channel height, moreover, was 3 mm, and the mass flux ranged from 133 to 300 kg/m2s. The two-phase flow characteristics were observed through a high-speed visualization experiment. Heat transfer tended to increase with the mean vapor quality, and, as expected, the fully filled metal foam channel offered the highest thermal performance. The streamwise insert pattern model had the lowest heat transfer at a low mass flux. However, at a higher mass flux, the three different insert models presented almost the same heat transfer coefficients. We found that the streamwise pattern model had a very low pressure drop compared to that of the spanwise pattern models. The goodness factors of the flow area and the core volume of the streamwise patterned model were higher than those of the full-filled metal foam channel.  相似文献   

3.
The requirements of high-strength, wear-resistance and lightweight of brake drums have been continually increasing in recent years and any specific aluminum alloy or particle-reinforced aluminum matrix composites may not satisfy all the demands. Combining dissimilar materials to play their respective advantages is a solution to this problem. In this study, a compound casting method was used to combine solid SiCp/A357 composite and a liquid 7050 aluminum alloy to prepare an aluminum matrix composite with a layered structure. The ProCAST numerical simulation software was used to predict the heat transfer in compound casting process and guide the preheating temperature of the wear-resistant ring in the experiment. An Optical Microscope (OM) and Scanning Electron Microscope (SEM) were used to observe microstructures around the solid–liquid bonding interface, the element distribution and phase component of which were analyzed by Energy Dispersive Spectroscopy (EDS) and mechanical properties were evaluated by microhardness and shear tests. The results showed that the interface of the layered aluminum matrix composite prepared by this method achieved complete metallurgical bonding and a transition zone formed on the solid surface. After T6 heat treatment, the average shear strength of the interface increased from 19.8 MPa to 33.8 MPa.  相似文献   

4.
Among different promising solutions, coupling closed-cell aluminium foam composite panels prepared by a powder metallurgical method with pore walls interconnected by microcracks, with low thermal conductivity phase change materials (PCMs), is one of the effective ways of increasing thermal conductivity for better performance of thermal storage systems in buildings. The internal structure of the foam formation, related to the porosity which decides the heat transfer rate, plays a significant role in the thermal energy storage performance. The dependence of the heat transfer characteristics on the internal foam structure is studied numerically in this work. The foamable precursor of 99.7% pure aluminium powder mixed with 0.15 wt.% of foaming agent, TiH2 powder, was prepared by compacting, and extruded to a volume of 20 × 40 × 5 mm. Two aluminium foam samples of 40 × 40 × 5 mm were examined with apparent densities of 0.7415 g/cm3 and 1.62375 g/cm3. The internal porous structure of the aluminium foam samples was modelled using X-ray tomography slices through image processing techniques for finite element analysis. The obtained numerical results for the heat transfer rate and effective thermal conductivity of the developed surrogate models revealed the influence of porosity, struts, and the presence of pore walls in determining the heat flow in the internal structure of the foam. Additionally, it was found that the pore size and its distribution determine the uniform heat flow rate in the entire foamed structure. The numerical data were then validated against the analytical predictions of thermal conductivity based on various correlations. It has been found that the simplified models of Bruggemann and Russell and the parallel–series model can predict the excellent effective thermal conductivity results of the foam throughout the porosity range. The optimal internal foam structure was studied to explore the possibilities of using aluminium foam for PCM-based thermal storage applications.  相似文献   

5.
A smart possible way to cool electronics equipment is represented by passive methods, which do not require an additional power input, such as Phase Change Materials (PCMs). PCMs have the benefit of their latent heat being exploited during the phase change from solid to liquid state. This paper experimentally investigates the melting of different PCMs having different melting temperatures (42, 55 and 64 °C). Two copper foams, having 10 PPI and relative densities of 6.7% and 9.5%, i.e., porosities of 93.3% and 90.5%, respectively, are used to enhance the thermal conductivity of PCMs. The block composed by the PCM and the copper foam is heated from one side, applying three different heat fluxes (10, 15 and 20 kW m−2): the higher the heat flux, the higher the temperature reached by the heated side and the shorter the time for a complete melting of the PCM. The copper foam with a relative density of 9.5% shows slightly better performance, whereas the choice of the melting temperature of the PCM depends on the time during which the passive cooling system must work. The effect of the foam material is also presented: a copper foam presents better thermal performances than an aluminum foam with the same morphological characteristics. Finally, experimental dimensionless results are compared against values predicted by a correlation previously developed.  相似文献   

6.
Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent.  相似文献   

7.
This study shows the performance of heat sinks (HS) with different designs under forced convection, varying geometric and boundary parameters, via computational fluid dynamics simulations. Initially, a complete and detailed analysis of the thermal performance of various conventional HS designs was taken. Afterwards, HS designs were modified following some additive manufacturing approaches. The HS performance was compared by measuring their temperatures and pressure drop after 15 s. Smaller diameters/thicknesses and larger fins/pins spacing provided better results. For fins HS, the use of radial fins, with an inverted trapezoidal shape and with larger holes was advantageous. Regarding pins HS, the best option contemplated circular pins in combination with frontal holes in their structure. Additionally, lattice HS, only possible to be produced by additive manufacturing, was also studied. Lower temperatures were obtained with a hexagon unit cell. Lastly, a comparison between the best HS in each category showed a lower thermal resistance for lattice HS. Despite the increase of at least 38% in pressure drop, a consequence of its frontal area, the temperature was 26% and 56% lower when compared to conventional pins and fins HS, respectively, and 9% and 28% lower when compared to the best pins and best fins of this study.  相似文献   

8.
Accurate prediction and control of the steel plate temperature in the laminar cooling process are very challenging. In this research, an experimental platform was built to measure the heat transfer characteristics of the steel plate in the process of matrix laminar spray cooling when the steel plate is one millimeter away from the upper surface. The “buried couple method” was used, including the cooling temperature and cooling rate. Then, the temperature and the integrated heat transfer coefficient at the steel plate surface were calculated by the time-sequential function method (TSFM). The obtained results show that the fast cooling stage under the water cooling condition occurred in the first 1.5 s, and the measuring point temperature decreased by 8%. The “re-reddening” phenomenon of the steel plate appeared with time, and the measuring point temperature increased by 37%. Second, the maximum calculated difference between the surface temperature and the measuring point temperature was 0.75 °C, and the integrated heat transfer coefficient conformed to the periodic boundary features. The comprehensive convective heat transfer coefficient on the surface was in agreement with the periodic boundary characteristics, and its value exhibited oscillatory attenuation with the cooling process, and the oscillatory peak period was about 6 seconds. Two methods, sequential function method (SFM) and finite difference method (FDM), were used to verify the correctness of TSFM.  相似文献   

9.
Fluidity tests of pure aluminum 1070 and Al-Si alloys with Si contents of up to 25% were conducted using a die cast machine equipped with a spiral die. The effects of the channel gap, die temperature, and injection speed on the fluidity were investigated. When the channel gap was small (0.5 mm), the flow length of the 1070 was minimized, and the fluidity increased monotonically at a gradual rate with increasing Si content. In contrast, larger gaps yielded convex fluidity–Si content curves. Additionally, heating the die had less of an influence on the fluidity of the 1070 than on that of the Al-Si alloy. These results are discussed in the context of the peeling of the solidification layer from the die based on the thicknesses of foils and strips cast by melt spinning and roll casting, respectively. At lower Si contents, heat shrinkage was greater and the latent heat was lower. When the heat shrinkage was greater, the solidification layer began to peel earlier, and the heat transfer between the solidification layer and the die became smaller. As a result, the fluidity of the 1070 was greatest when the channel gap was 0.8 mm.  相似文献   

10.
Long term stability is crucial to maturing any photovoltaic technology. We have studied the influence of sodium, which plays a key role in optimizing the performance of Cu(In,Ga)Se2 (CIGSe) solar cells, on the long-term stability of flexible CIGSe solar cells on polyimide foil. The standardized procedure of damp heat exposure (85% relative humidity at 85 °C) was used to simulate aging of the unencapsulated cells in multiple time steps while they were characterized by current-voltage analysis, capacitance-voltage profiling, as well as electroluminescence imaging. By comparing the aging process to cells that were exposed to heat only, it could be confirmed that moisture plays the key role in the degradation process. We found that cells with higher sodium content suffer from a more pronounced degradation. Furthermore, the experimental results indicate the superposition of an enhancing and a deteriorating mechanism during the aging process. We propose an explanation based on the corrosion of the planar contacts of the solar cell.  相似文献   

11.
Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH2) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0–0 mass %, 0.4–0 mass %, and 0.2–0 mass % TiH2 were selected as the amounts of TiH2 relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH2 addition) layer and shifted to the low-porosity (without TiH2 addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH2 (i.e., the combination of pore structures), can be fabricated.  相似文献   

12.
The damage process and failure mechanisms were analyzed by a series of quasi-static compressive experiments of seven materials including pure epoxy (EP), three different PPI (pores per linear inch) foam nickel-iron, and three different PPI foam nickel/iron-epoxy interpenetrating phase composites (IPC). Plotting the stress–strain curves of different materials, their change rules are discussed, then the effective elastic modulus and yield limit of the materials are provided, and the energy absorption properties of different materials are analyzed by the stress–strain curves. It was found that the effective elastic modulus and specific stiffness of the three IPC materials were higher than pure foam nickel-iron. The brittleness of epoxy can be obviously changed by selecting a suitable PPI foam nickel-iron composited with it. The unit volume energy absorption rate of foam nickel/iron-epoxy was significantly higher than pure epoxy and pure foam nickel-iron. It was also found that the energy absorption rate decreased with the increase in PPI. The stress relaxation rate decreased first and then increased with the increase in PPI. The creep behavior of the three composites was obvious in the creep elastic stage, and the creep rate increased with the increase in PPI. The creep rate decreased with the increase in PPI in the creep transition stage.  相似文献   

13.
In this paper, we present a new approach to model the steady-state heat transfer in heterogeneous materials. The multiscale finite element method (MsFEM) is improved and used to solve this problem. MsFEM is a fast and flexible method for upscaling. Its numerical efficiency is based on the natural parallelization of the main computations and their further simplifications due to the numerical nature of the problem. The approach does not require the distinct separation of scales, which makes its applicability to the numerical modeling of the composites very broad. Our novelty relies on modifications to the standard higher-order shape functions, which are then applied to the steady-state heat transfer problem. To the best of our knowledge, MsFEM (based on the special shape function assessment) has not been previously used for an approximation order higher than p = 2, with the hierarchical shape functions applied and non-periodic domains, in this problem. Some numerical results are presented and compared with the standard direct finite-element solutions. The first test shows the performance of higher-order MsFEM for the asphalt concrete sample which is subject to heating. The second test is the challenging problem of metal foam analysis. The thermal conductivity of air and aluminum differ by several orders of magnitude, which is typically very difficult for the upscaling methods. A very good agreement between our upscaled and reference results was observed, together with a significant reduction in the number of degrees of freedom. The error analysis and the p-convergence of the method are also presented. The latter is studied in terms of both the number of degrees of freedom and the computational time.  相似文献   

14.
Reticulated porous ceramic (RPC) made of ceria are promising structures used in solar thermochemical redox cycles for splitting CO2 and H2O. They feature dual-scale porosity with mm-size pores for effective radiative heat transfer during reduction and µm-size pores within its struts for enhanced kinetics during oxidation. In this work, the detailed 3D digital representation of the complex dual-scale RPC is obtained using synchrotron submicrometer tomography and X-ray microtomography. Total and open porosity, pore size distribution, mean pore diameter, and specific surface area are extracted from the computer tomography (CT) scans. The 3D digital geometry is then applied in direct pore level simulations (DPLS) of Fourier’s law within the solid and the fluid phases for the accurate determination of the effective thermal conductivity at each porosity scale and combined, and for fluid-to-solid thermal conductivity from 10−5 to 1. Results are compared to predictions by analytical models for structures with a wide range of porosities 0.09–0.9 in both the strut’s µm-scale and bulk’s mm-scale. The morphological properties and effective thermal conductivity determined in this work serve as an input to volume-averaged models for the design and optimization of solar chemical reactors.  相似文献   

15.
The study deals with an application of aluminum foam as an energy-absorbing material for the carrying structure of a rail car. The material is particularly recommended for circular tube carrying structures. The authors conducted mathematical modeling of dynamic loads on the carrying structure of an open wagon that faces shunting impacts with consideration of the center sill filled with aluminum foam. It was established that the maximum accelerations on the carrying structure of an open wagon were 35.7 m/s2, which was 3.5% lower in comparison with those for a circular tube structure without a filler. The results obtained were proved by computer modeling. The strength of the carrying structure of an open wagon was also calculated. It was established that aluminum foam applied as a filler for the center sill decreased the maximum equivalent stresses in the carrying structure of an open wagon by about 5% and displacements by 12% in comparison with those involving the circular tube carrying structure of an open wagon without a filler. The natural frequencies and the oscillation modes of the carrying structure of an open wagon were defined. The designed models of the dynamic loading of the carrying structure of an open wagon were verified with an F-test.  相似文献   

16.
The melt temperature of aluminum alloys plays a significant role in determining the microstructure characteristic during continuous rheo-extrusion. However, it is difficult to measure the actual melt temperature in the roll-shoe gap. In this work, based on the basic theory of heat transfer, a calculation model for heat transfer coefficient of cooling water/roll interface and melt/roll interface is established. In addition, the relationship between the temperature at the melt/roll interface and the velocity of cooling water is investigated. Combined with the CALPHAD calculation, the melt temperature during solidification in the continuous rheo-extrusion process is calculated. Using this model, the cooling rate of an Al–6Mg (wt.%) alloy melt prepared by continuous rheo-extrusion is estimated to be 10.3 K/s. This model used to determine the melt parameters during solidification provides a reference for optimizing the production process of continuous rheo-extrusion technology.  相似文献   

17.
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.  相似文献   

18.
Energy storage is one of the most effective ways to increase energy savings and efficiency of heating and air conditioning systems. Phase change materials (PCMs) are increasingly used in latent heat thermal energy storage (LHTES) systems to increase their capacity. In such systems, costs are a very important factor of viability so the typical heat transfer elements like fin-and-tube heat exchangers are used to construct the LHTES. The problem of this approach is a possibility of corrosion of metals in contact with PCM that shortens the life cycle of LHTES. Therefore, the main objective of this work is an experimental study of the compatibility of metals typically used in fin-and-tube heat exchangers (copper and aluminum) with three commercially available organic PCMs (RT15, RT18HC, and RT22HC). Compatibility of PCMs with copper and aluminum was tested for a period of approximately two months, during which a total of 35 heating and cooling cycles were carried out, each with a complete phase transition of the tested materials. In the course of the tests it was assessed whether the PCM caused corrosion of the tested metals. The evaluation was based on the gravimetric method, calculation of corrosion rate, and visual observations and measurements of the features on the metal sample’s surface using optical microscope. It was determined that RT15, RT18 HC, and RT22 HC show low corrosion rates for aluminum and copper samples. The visual tests indicate that there was no change in the PCM solutions during the tests, only a sediment was observed for the samples with the combination of copper and aluminum. Microscopic examination of the surface of the samples did not show any significant surface changes, except for the aluminum samples, on the surface of which local microdefects were observed. It follows from the present results that copper and aluminum can be used to design the heat transfer surface in contact with the chosen PCMs.  相似文献   

19.
Alumina replica foams were manufactured by the Schwartzwalder sponge replication technique and were provided with an additional strut porosity by a freeze-drying/ice-templating step prior to thermal processing. A variety of thickeners in combination with different alumina solid loads in the dispersion used for polyurethane foam template coating were studied. An additional strut porosity as generated by freeze-drying was found to be in the order of ~20%, and the spacings between the strut pores generated by ice-templating were in the range between 20 µm and 32 µm. In spite of the lamellar strut pore structure and a total porosity exceeding 90%, the compressive strength was found to be up to 1.3 MPa. Combining the replica process with freeze-drying proves to be a suitable method to enhance foams with respect to their surface area accessible for active coatings while preserving the advantageous flow properties of the cellular structure. A two-to-threefold object surface-to-object volume ratio of 55 to 77 mm−1 was achieved for samples with 30 vol% solid load compared to 26 mm−1 for non-freeze-dried samples. The freeze-drying technique allows the control of the proportion and properties of the introduced pores in an uncomplicated and predictable way by adjusting the process parameters. Nevertheless, the present article demonstrates that a suitable thickener in the dispersion used for the Schwartzwalder process is inevitable to obtain ceramic foams with sufficient mechanical strength due to the necessarily increased water content of the ceramic dispersion used for foam manufacturing.  相似文献   

20.
Aluminum foam has received considerable attention in various fields and is expected to be used as an engineering material owing to its high energy absorption properties and light weight. To improve the mechanical properties of aluminum foam, combining it with dense tubes, such as aluminum foam-filled tubes, was considered necessary. In this study, an aluminum foam-filled steel tube, which consisted of ADC12 aluminum foam and a thin-wall steel tube, was successfully fabricated by friction welding. It was shown that a diffusion bonding layer with a thickness of approximately 10 μm was formed, indicating that strong bonding between the aluminum foam and the steel tube was realized. By the X-ray computed tomography observation of pore structures, the fabrication of an aluminum foam-filled tube with almost uniform pore structures over the entire specimen was confirmed. In addition, it was confirmed that the aluminum foam-filled steel tube exhibited mechanical properties superior to those of the ADC12 aluminum foam and steel tube. This is considered to be attributed to the combination of the aluminum foam and steel tube, which particularly prevents the brittle fracture and collapse of the ADC12 foam by the steel tube, along with the strong metal bonding between the aluminum foam and the steel tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号