首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lipid accumulation in obesity triggers a low-grade inflammation that results from an imbalance between pro- and anti-inflammatory components of the immune system and acts as the major underlying mechanism for the development of obesity-associated diseases, notably insulin resistance and type 2 diabetes. Innate-like B cells are a subgroup of B cells that respond to innate signals and modulate inflammatory responses through production of immunomodulatory mediators such as the anti-inflammatory cytokine IL-10. In this study, we examined innate-like B cells in visceral white adipose tissue (VAT) and the relationship of these cells with their counterparts in the peritoneal cavity and spleen during diet-induced obesity (DIO) in mice. We show that a considerable number of innate-like B cells bearing a surface phenotype distinct from the recently identified “adipose natural regulatory B cells” populate VAT of lean animals, and that spleen represents a source for the recruitment of these cells in VAT during DIO. However, demand for these cells in the expanding VAT outpaces their recruitment during DIO, and the obese environment in VAT further impairs their function. We further show that removal of splenic precursors of innate-like B cells through splenectomy exacerbates, whereas supplementation of these cells via adoptive transfer ameliorates, DIO-associated insulin resistance. Additional adoptive transfer experiments pointed toward a dominant role of IL-10 in mediating the protective effects of innate-like B cells against DIO-induced insulin resistance. These findings identify spleen-supplied innate-like B cells in VAT as previously unrecognized players and therapeutic targets for obesity-associated diseases.The current obesity epidemic has led to an increase in the incidence of a variety of disorders that are collectively referred to as obesity-associated diseases. Changes in diet and lifestyle, especially the abundance of energy-dense high-fat foods, have played a central role in the emergence of this epidemic. Lipid accumulation in obesity triggers a low-grade inflammation that results from an imbalance between pro- and anti-inflammatory components of the immune system. This chronic inflammation acts as the major underlying mechanism for the development of obesity-associated diseases, notably insulin resistance and type 2 diabetes (T2D) (15). Both the innate and adaptive branches of the immune system are activated during obesity and participate in the induction and maintenance of obesity-triggered inflammation (17). In metabolic organs, most notably visceral white adipose tissue (VAT), increases in proinflammatory cells and decreases in anti-inflammatory cells create an insulin-antagonizing environment that interferes with normal metabolic pathways (15). Whereas it is now clear that multiple immune cells play a role in this process, the full spectrum of cellular and molecular signals that initiate and sustain the chronic inflammation in obesity remains to be delineated.Lymphocytes of the T- and B-cell lineages are traditionally categorized as components of the adaptive immune system, as they recognize specific pathogen-derived antigens and are capable of developing long-lasting immune memory. Among these conventional adaptive lymphocytes, CD8+ T cells and follicular (B-2) B cells have been shown to exacerbate, whereas CD4+Foxp3+ regulatory T (Treg) cells have been shown to protect against, obesity-triggered inflammation and insulin resistance (811). Over the past few decades, a growing family of lymphocyte subsets with innate-like properties and functions has been identified (1217). These cells, through recognition of nonspecific innate immune signals and production of immunomodulatory cytokines, interact with and influence the function of multiple cell types of the innate and adaptive branches of the immune system and thus shape subsequent immune and inflammatory responses and impact disease outcomes. In the T-cell lineage, several research groups have investigated the role of natural killer T (NKT) cells in obesity and insulin resistance (18). A recent report identified a subset of B cells in white adipose tissue that expressed a unique surface phenotype and protected mice against obesity-induced inflammation (19). However, whether other subsets of innate-like B cells capable of influencing insulin sensitivity also populate VAT is currently unknown. Additionally, the source(s) for the recruitment of these cells in VAT during obesity remains unclear.Several subsets of innate-like B cells, including B-1a and B-1b B cells, marginal zone (MZ) B cells, regulatory B cells, and innate response activator (IRA) B cells have been identified in lymphoid organs and in peritoneal cavity (PerC) of mice (12, 1416, 1921). These innate-like B-cell subsets share several phenotypic and functional characteristics but also display important differences. Compared with conventional adaptive B-2 B cells, innate-like B cells exhibit increased responsiveness to innate signals through a variety of innate receptors such as toll-like receptors (TLRs) (12, 1416, 20, 21). Although these cells only constitute a small subpopulation of B cells in spleen and mainly reside in the PerC under steady-state conditions (12), adult mouse spleen houses progenitors and precursors of these cells and this organ therefore plays a critical role in maintaining a functional pool of innate-like B cells (2224). Among innate-like B cells, IL-10–producing B cells, often referred to as regulatory B cells or B10 cells, modulate inflammatory responses primarily through production of the anti-inflammatory cytokine IL-10 (1416). Furthermore, B-1a B cells are an important source of natural IgM antibodies that protect against atherosclerosis, a chronic inflammatory disease that shares several mechanistic features with obesity-associated diseases (25, 26).Several recent studies are consistent with a protective role of spleen-derived IL-10–producing B cells in obesity-induced inflammation and insulin resistance. Removal of spleen in diet-induced obesity (DIO) mice exacerbated VAT inflammation, which could be ameliorated by supplementation of IL-10 (27). Unfractionated B cells of DIO mice and of patients with T2D produced reduced levels of IL-10 in response to in vitro stimulation (10, 28). Whereas these findings suggest a critical role of spleen for provision of IL-10, possibly through IL-10–producing B cells, in protecting against obesity-associated insulin resistance, the cellular mechanisms of action remain unclear.We show here that a substantial number of B cells with a surface phenotype resembling innate-like B-1a and regulatory B10 B cells (12, 16, 29) but distinct from recently identified “adipose natural regulatory B cells” (19) populate VAT under steady-state conditions. Similar to their counterparts in spleen and PerC, these cells in VAT spontaneously produce IgM antibodies and constitute the majority of IL-10–competent B cells at this anatomic location. Whereas the spleen supports a pool of innate-like B cells in VAT, the demand for these cells in the expanding VAT during DIO outpaces their recruitment and the obese environment in VAT further impairs their IL-10 competence. Consequently, splenectomy exacerbates, whereas supplementation with these innate-like B cells via adoptive transfer ameliorates, DIO-induced systemic insulin resistance. Overall, our findings have identified a previously unrecognized subset of IL-10–competent innate-like B cells in VAT and provided evidence for a critical role of spleen in supplying these cells to VAT for protection against obesity-associated insulin resistance.  相似文献   

3.
4.
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host–pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.Rickettsiae are responsible for some of the most devastating human infections (14). It has been forecasted that temperature increases attributable to global climate change will lead to more widespread distribution of rickettsioses (5). These tick-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia, including Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) in the United States and Latin America (2, 3), and Rickettsia conorii, the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, and India (6). A high infectivity and severe illness after inhalation make some rickettsiae (including Rickettsia prowazekii, R. rickettsii, Rickettsia typhi, and R. conorii) bioterrorism threats (7). Although the majority of rickettsial infections can be controlled by appropriate broad-spectrum antibiotic therapy if diagnosed early, up to 20% of misdiagnosed or untreated (1, 3) and 5% of treated RMSF cases (8) result in a fatal outcome caused by acute disseminated vascular endothelial infection and damage (9). Fatality rates as high as 32% have been reported in hospitalized patients diagnosed with Mediterranean spotted fever (10). In addition, strains of R. prowazekii resistant to tetracycline and chloramphenicol have been developed in laboratories (11). Disseminated endothelial infection and endothelial barrier disruption with increased microvascular permeability are the central features of SFG rickettsioses (1, 2, 9). The molecular mechanisms involved in rickettsial infection remain incompletely elucidated (9, 12). A comprehensive understanding of rickettsial pathogenesis and the development of novel mechanism-based treatment are urgently needed.Living organisms use intricate signaling networks for sensing and responding to changes in the external environment. cAMP, a ubiquitous second messenger, is an important molecular switch that translates environmental signals into regulatory effects in cells (13). As such, a number of microbial pathogens have evolved a set of diverse virulence-enhancing strategies that exploit the cAMP-signaling pathways of their hosts (14). The intracellular functions of cAMP are predominantly mediated by the classic cAMP receptor, protein kinase A (PKA), and the more recently discovered exchange protein directly activated by cAMP (Epac) (15). Thus, far, two isoforms, Epac1 and Epac2, have been identified in humans (16, 17). Epac proteins function by responding to increased intracellular cAMP levels and activating the Ras superfamily small GTPases Ras-proximate 1 and 2 (Rap1 and Rap2). Accumulating evidence demonstrates that the cAMP/Epac1 signaling axis plays key regulatory roles in controlling various cellular functions in endothelial cells in vitro, including cell adhesion (1821), exocytosis (22), tissue plasminogen activator expression (23), suppressor of cytokine signaling 3 (SOCS-3) induction (2427), microtubule dynamics (28, 29), cell–cell junctions, and permeability and barrier functions (3037). Considering the critical importance of endothelial cells in rickettsioses, we examined the functional roles of Epac1 in rickettsial pathogenesis in vivo, taking advantage of the recently generated Epac1 knockout mouse (38) and Epac-specific inhibitors (39, 40) generated from our laboratory. Our studies demonstrate that Epac1 plays a key role in rickettsial infection and represents a therapeutic target for fatal rickettsioses.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

14.
15.
Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.Living organisms have developed dynamic strategies to explore nutrients in the environment. Morphological plasticity of plant roots and microorganisms is often compared with foraging behavior of animals. Plant roots are highly dynamic systems because they can modify their structure to reach nutrient resources in soil and optimize their nutrient uptake capacities. This strategy appears to be associated with morphological adaptation, because plants are sessile in nature and nutrient availabilities in soil are often altered by surrounding biotic and abiotic factors and climate changes. Morphological modifications of plant root systems are particularly prominent when they grow in soil environments with unbalanced nutrient availabilities (14). Among the essential elements required for plant growth, nitrogen (N) has a particularly strong effect on root development (16). Lateral roots can be developed in N-rich soil patches where adequate amounts of nitrate (NO3) or ammonium (NH4+) are available, whereas this local outgrowth of lateral roots is restricted in N-deficient patches (79). In addition to these local N responses, lateral root growth is stimulated in response to mild N deficiency and suppressed under excess N supply by systemic plant signals carrying information on the nutritional status of distant plant organs (4, 1013). These morphological responses are important for plant fitness and N acquisition, despite the cost for structuring the root system architecture (2, 6). However, lateral root growth is not sustained when plants are deprived of N for an extended period (4). Under such severe circumstances, the development of new lateral roots should rather be restricted to prevent the risk of extending roots into N-poor environments. Economizing the cost for root development appears to be an important morphological strategy for plant survival.To modify root traits in response to changing N availabilities, plants use various types of signaling molecules including hormones and small RNAs (10, 1317). In particular, auxin signaling proteins and auxin transporters have been proven essential for lateral root development in response to local nitrate supplies (10, 1417). These proteins are involved in increasing auxin sensitivity or auxin accumulation at lateral root initials or lateral root tips exposed to NO3, and the NRT1.1 nitrate transporter has been suggested to play a key role in NO3 sensing (8, 17, 18). In addition, mutations of the nitrate transporter NRT2.1 have been shown to repress or stimulate lateral root initiation depending on N conditions and sucrose supply (12, 19). Thus, N-dependent root development is apparently under control of complex mechanisms, although its signaling components have remained largely unidentified. In this study, we have identified several homologs of the CLE (CLAVATA3/ESR-related) gene family (2024) to be up-regulated by N deficiency and involved in this yet unresolved regulatory mechanism. CLAVATA3 (CLV3) is known as a signaling peptide that binds to the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase (LRR-RLK) and controls stem cell differentiation in the shoot apical meristem (2532). CLE-receptor signaling modules are also known to control meristem function in the primary and lateral roots (3335). The N-responsive CLE peptides described in the present study belong to the group of CLE peptides with the highest sequence similarity to CLAVATA3 (CLV3) (2123) and may partly substitute for CLV3 in the shoot apical meristem (31, 36, 37). Our present findings indicate that the N-responsive CLE peptides and CLV1 are signaling components required for translating an N-deficient nutritional status into a morphological response inhibiting the outgrowth of lateral root primordia in Arabidopsis. The present study demonstrates a unique function of the CLE-CLV1 signaling module in roots and provides new insights into signaling mechanisms regulating the expansion of the plant root system in N-deficient environments.  相似文献   

16.
17.
18.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras–GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras–GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras–GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12–induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras–GTP to stimulate Ras-induced senescence in nontransformed human cells.ASPP2, also known as 53BP2L, is a tumor suppressor whose expression is altered in human cancers (1). Importantly, targeting of the ASPP2 allele in two different mouse models reveals that ASPP2 heterozygous mice are prone to spontaneous and γ-irradiation–induced tumors, which rigorously demonstrates the role of ASPP2 as a tumor suppressor (2, 3). ASPP2 binds p53 via the C-terminal ankyrin-repeat and SH3 domain (46), is damage-inducible, and can enhance damage-induced apoptosis in part through a p53-mediated pathway (1, 2, 710). However, it remains unclear what biologic pathways and mechanisms mediate ASPP2 tumor suppressor function (1). Indeed, accumulating evidence demonstrates that ASPP2 also mediates nonapoptotic p53-independent pathways (1, 3, 1115).The induction of cellular senescence forms an important barrier to tumorigenesis in vivo (1621). It is well known that oncogenic Ras signaling induces senescence in normal nontransformed cells to prevent tumor initiation and maintain complex growth arrest pathways (16, 18, 2124). The level of oncogenic Ras activation influences its capacity to activate senescence; high levels of oncogenic H-RasV12 signaling leads to low grade tumors with senescence markers, which progress to invasive cancers upon senescence inactivation (25). Thus, tight control of Ras signaling is critical to ensure the proper biologic outcome in the correct cellular context (2628).The ASPP2 C terminus is important for promoting p53-dependent apoptosis (7). The ASPP2 N terminus may also suppress cell growth (1, 7, 2933). Alternative splicing can generate the ASPP2 N-terminal truncated protein BBP (also known as 53BP2S) that is less potent in suppressing cell growth (7, 34, 35). Although the ASPP2 C terminus mediates nuclear localization, full-length ASPP2 also localizes to the cytoplasm and plasma membrane to mediate extranuclear functions (7, 11, 12, 36). Structural studies of the ASPP2 N terminus reveal a β–Grasp ubiquitin-like fold as well as a potential Ras-binding (RB)/Ras-association (RA) domain (32). Moreover, ASPP2 can promote H-RasV12–induced senescence (13, 15). However, the molecular mechanism(s) of how ASPP2 directly promotes Ras signaling are complex and remain to be completely elucidated.Here, we explore the molecular mechanisms of how Ras-signaling is enhanced by ASPP2. We demonstrate that ASPP2: (i) binds Ras-GTP and stimulates Ras-induced ERK signaling via its N-terminal domain at the plasma membrane; (ii) enhances Ras-GTP loading and B-Raf/C-Raf dimerization and forms a ASPP2/Raf complex; (iii) stimulates Ras-induced C-Raf phosphorylation and activation; and (iv) potentiates H-RasV12–induced senescence in both primary human fibroblasts and neonatal human epidermal keratinocytes. These data provide mechanistic insight into ASPP2 function(s) and opens important avenues for investigation into its role as a tumor suppressor in human cancer.  相似文献   

19.
The postdomestication adaptation of maize to longer days required reduced photoperiod sensitivity to optimize flowering time. We performed a genome-wide association study and confirmed that ZmCCT, encoding a CCT domain-containing protein, is associated with the photoperiod response. In early-flowering maize we detected a CACTA-like transposable element (TE) within the ZmCCT promoter that dramatically reduced flowering time. TE insertion likely occurred after domestication and was selected as maize adapted to temperate zones. This process resulted in a strong selective sweep within the TE-related block of linkage disequilibrium. Functional validations indicated that the TE represses ZmCCT expression to reduce photoperiod sensitivity, thus accelerating maize spread to long-day environments.Maize (Zea mays L.) was domesticated in Southern Mexico roughly 9,000 y ago from Balsas teosinte (Zea mays ssp. parviglumis) (1), which requires short-day conditions to flower (2). Therefore the spread of maize from tropical to temperate regions required the postdomestication adaptation of maize to longer days (1, 3, 4). As such, temperate maize is largely day-length insensitive, whereas tropical maize lines are generally sensitive to longer day lengths.To modulate the timing of flowering, plants integrate signals from the environment and from endogenous regulatory pathways (5). Most genes known to regulate maize flowering (612) are part of the autonomous pathway, such as id1 (6, 7), ZCN8 (8), dlf1 (9), zfl1 (10), conz1 (11), and Vgt1 (12). Flowering time in maize is extremely variable (ranging from 35–120 d) (13) and is controlled primarily by a large number of quantitative trait loci (QTLs), each with a small effect (14). Relatively few of these flowering-time QTLs affect the photoperiod response, although ZmCCT, encoding a CCT domain-containing protein, appears to be the most important locus in these contexts (1518). As such, molecular details concerning the photoperiodic control of maize flowering remain unclear.Transposable elements (TEs) played a key role in adaptive plant evolution and phenotypic variation by altering gene expression and function (1923). In fact, TEs often served as targets of selection during evolution (24). Insertion of the Rider retrotransposon into the tomato genome increased expression of the gene SUN, which led to an elongated fruit shape (25). Similarly, insertion of a miniature inverted-repeat TE (MITE) into Vgt1, which is a cis-regulatory element located ∼70 kb upstream of the flowering-time repressor ZmRap2.7, is tightly associated with flowering-time variation in maize (12). Finally, insertion of a Hopscotch retrotransposon upstream of the maize-domestication gene tb1 increased apical dominance in maize (26, 27).Here we performed a genome-wide association study (GWAS) using a diverse panel of maize lines (28, 29) to identify genetic variants near ZmCCT that associate with flowering time. Using an overlapping PCR approach, we detected a CACTA-like TE within the ZmCCT regulatory region. Genetic effects of this TE on flowering time were investigated by ZmCCT-based association mapping and biparental linkage analysis. The CACTA-like TE appeared to be a causative factor in reducing photoperiod sensitivity under long-day conditions and was the target of a strong selective sweep during the postdomestication spread of maize. Functional validations demonstrate that ZmCCT is involved in the photoperiod response and that the CACTA-like TE within ZmCCT represses gene expression, rendering maize insensitive to long days.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号