首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Carbon anodes participate in chemical reactions to reduce alumina in the Hall–Héroult process, of which coke aggregates make up a major part. The failure analysis of coke aggregates not only leads to a better understanding of the deformation mechanisms of anode paste under compressive loading but also can identify potential causes of structural defects in carbon anodes, such as horizontal cracks. The coke aggregates are composed of particles with different size distributions and shapes, which may strongly affect the failure behavior of the anode during compaction. In this paper, the effects of particle size distributions and shapes on the mechanical behavior and the failure of coke aggregates are investigated using the discrete element method modeling technique. The numerical results reveal that, although the mechanical behavior of coke mixtures is generally dependent on larger particles, the presence of fine particles in the coke aggregates reduces fluctuations in the stress–strain diagram. In addition, the rolling resistance model is employed as a parameter representing the effect of particle shape. It is shown that the rolling resistance model can be an alternative to the overlapped spheres model, which has a higher computational cost than the rolling resistance model. The second-order work criterion is used to evaluate the stability of the coke aggregates, the results of which indicate that the addition of fine particles as well as increasing the rolling resistance between the particles increases the stability range of the coke aggregates. Moreover, by using the analysis of micro-strain contour evaluations during the compaction process, it is shown that, both by adding fine particles to the coke mixture and by increasing the rolling resistance between the particles, the possibility of creating a compression band in the coke aggregates is reduced. Since the presence of the compaction bands in the anode paste creates an area prone to horizontal crack generations, the results of this study could lead to the production of carbon anodes with fewer structural defects.  相似文献   

2.
Three-dimensional printing technology using fused deposition modeling processes is becoming more and more widespread thanks to the improvements in the mechanical properties of materials with the addition of short fibers into the polymeric filaments. The final mechanical properties of the printed components depend, not only on the properties of the filament, but also on several printing parameters. The main purpose of this study was the development of a tool for designers to predict the real mechanical properties of printed components by performing finite element analyses. Two different materials (nylon reinforced with glass or carbon fibers) were investigated. The experimental identification of the elastic material model parameters was performed by testing printed fully filled dog bone specimens in two different directions. The obtained parameters were used in numerical analyses to predict the mechanical response of simple structures. Blocks of 20 mm × 20 mm × 160 mm were printed in four different percentages of a triangular infill pattern. Experimental and numerical four-point bending tests were performed, and the results were compared in terms of load versus curvature. The analysis of the results demonstrated that the purely elastic transversely isotropic material model is adequate for predicting behavior, at least before nonlinearities occur.  相似文献   

3.
Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive.  相似文献   

4.
The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored.  相似文献   

5.
In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles.  相似文献   

6.
To study the dynamic plastic properties of high-purity molybdenum materials at high temperature and high strain rate, we designed tests to compare the mechanical behaviour of two high-purity molybdenum materials with different purities and two with different processing deformation conditions under dynamic impact compression in the temperature range of 297–1273 K. We analysed the molybdenum materials’ sensitivities to the strain-hardening effect, strain rate-strengthening effect, and temperature-softening effect as well as the comprehensive response to the combined effect of the strain rate and temperature, the adiabatic impact process, and the microstructure at high temperature and high strain rate. Furthermore, based on a modified Johnson–Cook constitutive model, we quantitatively analysed the flow stresses in these materials. The calculation results strongly agree with the test results. Our findings indicate that the high-purity molybdenum materials show consistent sensitivity to the combined effect of strain rate and temperature regarding the dynamic plastic properties. The materials with higher purity are less sensitive to the combined effect of the strain rate and temperature, and those with less processing deformation experience more pronounced strain-hardening effects. Under high strain rate at room temperature, these materials are highly susceptible to impact embrittlement and decreases in dynamic plastic properties due to intergranular fracture in the internal microstructure. However, increasing the impact environment temperature can significantly improve their plastic properties. The higher the temperature, the better the plastic properties and the higher the impact toughness.  相似文献   

7.
This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA) fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.  相似文献   

8.
This paper describes methods, procedures, and results of cyclic loading tensile tests of a PBO FRCM composite. The main objective of the research is the evaluation of the effect of low- and high-cycle fatigue on the composite tensile properties, namely the tensile strength, ultimate tensile strain, and slope of the stress–strain curve. To this end, low- and high-cycle fatigue tests and post-fatigue tests were performed to study the composite behavior when subjected to cyclic loading and after being subjected to a different number of cycles. The results showed that the mean stress and amplitude of fatigue cycles affect the specimen behavior and mode of failure. In high-cycle fatigue tests, failure occurred due to progressive fiber filaments rupture. In low-cycle fatigue, the stress–strain response and failure mode were similar to those observed in quasi-static tensile tests. The results obtained provide important information on the fatigue behavior of PBO FRCM coupons, showing the need for further studies to better understand the behavior of existing concrete and masonry members strengthened with FRCM composites and subjected to cyclic loading.  相似文献   

9.
With the premise of investigating mechanical properties, the thermal conductivity of autoclaved aerated concrete (AAC) is a key index of self-insulation block walls for building energy conservation. This study focused on the effect of pore structures on the mechanical performance and thermal conductivity of AAC with the comparison of AAC base materials. Different kinds of AAC and their base materials were prepared and experimentally investigated. While maintaining a consistent mix proportion of the AAC base material, the pore structure of AAC was changed by the dosage of aluminum power/paste, foam stabilizer, and varying the stirring time of aluminum paste. The steam curing systems of AAC and the base material were determined based on SEM (Scanning Electronic Microscopy) and XRD (X-ray Diffraction) tests. With almost the same apparent density, the pore size decreased with the increasing content of foam stabilizer, and the mixing time of aluminum paste and foam stabilizer has a great influence on pore size. The thermal conductivity test and compressive test results indicated that that pore size had an effect on the thermal conductivity, but it had little effect on the compressive strength, and the thermal conductivity of sand aeration AAC was 8.3% higher than that of fly ash aeration AAC; the compressive strength was 10.4% higher, too. With almost the same apparent density, the regression mathematical model indicates that the thermal conductivity of AAC increased gradually with the increase of pore size, but it had little effect on the compressive strength. From the test results of basic mechanical properties, the mechanical model of cubic compressive strength, elastic modulus, axial compressive strength, and splitting tensile strength was obtained. The proposed stress–strain relationship model could well describe the relationship of AAC and the base material at the rising section of the curve.  相似文献   

10.
Austenite and duplex stainless steels are widely used in engineering, and the latter exhibits a more excellent combination of mechanical properties and corrosion resistance due to the coexistence of austenite and ferrite and higher nitrogen. However, fatigue failure still threatens their structural integrity. A comprehensive comparison of their cyclic deformation behavior is a major foundation to understand the role of duplex-phase microstructure and nitrogen in the safety assessment of engineering components. Thus, in this paper, the cyclic deformation behavior of fully-austenitic stainless steel 316L and duplex stainless steel 2205 was studied by a series of low cycle fatigue tests with various strain amplitudes, loading rates and tensile holding. A theoretical mechanism diagram of the interaction between nitrogen and dislocation movements during cyclic loads was proposed. Results show that the cyclic stress response of 2205 was the primary cyclic hardening, followed by a long-term cyclic softening regardless of strain amplitudes and rates, while an additional secondary hardening was observed for 316L at greater strain amplitudes. Cyclic softening of 2205 was restrained under slower strain rates or tensile holding due to the interaction between nitrogen and dislocations. The cyclic plasticity of 2205 started within the austenite, and gradually translated into the ferrite with the elevation of the cyclic amplitude, which lead to a decreased hardening ratio with the increase in amplitude and a shorter fatigue life for a given smaller plastic strain amplitude.  相似文献   

11.
The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ′ precipitates.  相似文献   

12.
The cyclic tensile behavior of steel-reinforced high strain-hardening ultrahigh-performance concrete (HSHUHPC) was investigated in this paper. In the experimental program, 12 HSHUHPC specimens concentrically placed in a single steel reinforcement under cyclic uniaxial tension were tested, accompanied by acoustic emission (AE) source locating technology, and 4 identical specimens under monotonic uniaxial tension were tested as references. The experimental variables mainly include the loading pattern, the diameter of the embedded steel rebar, and the level of target strain at each cycle. The tensile responses of the steel-reinforced HSHUHPC specimens were evaluated using multiple performance measures, including the failure pattern, load–strain response, residual strain, stiffness degradation, and the tension-stiffening behavior. The test results showed that the enhanced bond strength due to the inclusion of steel fibers transformed the failure pattern of the steel-reinforced HSHUHPC into a single, localized macro-crack in conjunction with a sprinkling of narrow and closely spaced micro-cracks, which intensified the strain concentration in the embedded steel rebar. Besides, it was observed that the larger the diameter of the embedded steel rebar, the smaller the maximum accumulative tensile strain under cyclic tension, which indicated that the larger the diameter of the embedded steel rebar, the greater the contribution to the tensile stiffness of steel-reinforced HSHUHPC specimens in the elastic–plastic stage. In addition, it was found that a larger embedded steel rebar appeared to reduce the tension-stiffening effect (peak tensile strength) of the HSHUHPC. Moreover, the residual strain and the stiffness of the steel-reinforced HSHUHPC were reduced by increasing the number of cycles and finally tended toward stability. Nevertheless, different target strain rates in each cycle resulted in different eventual cumulative tensile strain rates; hence the rules about failure pattern, residual strain, and loading stiffness were divergent. Finally, the relationship between the accumulative tensile strain and the loading stiffness degradation ratio under cyclic tension was proposed and the tension-stiffening effect was analyzed.  相似文献   

13.
In this paper, monotonic and cyclic loading/unloading tensile behavior of four different 3D needle-punched C/SiC composites are investigated. Under tensile loading, multiple micro parameters of tensile tangent modulus, tensile strength, and fracture strain are used to characterize tensile damage and fracture behavior. Under cyclic loading/unloading, multiple damage micro parameters of unloading residual strain, tensile peak strain, hysteresis loops width, hysteresis loops area, unloading and reloading inverse tangent modulus (ITM) are used to describe the tensile damage evolution. After tensile fracture, fracture surfaces were observed under a scanning electron microscope (SEM). Damage of matrix cracking, interface debonding, fibers fracture and pullout in different plies is observed. Relationships between composite tensile mechanical behavior, damage parameters, and micro damage mechanisms are established. When the fiber volume fraction along the loading direction increases, the composite initial tangent modulus, tensile strength and fracture strain increase, and the unloading residual strain, peak strain, hysteresis width and hysteresis area decrease. For Types 1–4 3D needle-punched C/SiC composite, the fiber volume lies in the range of 25.6–32.8%, the composite initial tangent modulus was in the range of 161.4–220.4 GPa, the composite tensile strength was in the range of 64.4–112.3 MPa, and the composite fracture strain was in the range of 0.16–0.25%.  相似文献   

14.
In the last years, powder-based Laser Metal Deposition (LMD) has been attracting attention as a disruptive Additive Manufacturing (AM) technique for both the fabrication and restoration of Inconel 718 components, enabling to overcome current limitations faced by conventional manufacturing processes in terms of manufacturing costs, tool wear, and lead time. Nevertheless, the uncertainty related to the final mechanical performance of the as-built LMD parts limits a wider adoption of such technology at industrial level. This research work focuses on the mechanical characterization of as-built Inconel 718 specimens through split Hopkinson tensile bar tests performed at different strain rate conditions. The influence of laser power on the final mechanical behavior of the as-built tensile samples is discussed and compared with the mechanical response of as-cast ones. The as-built specimens exhibit a high internal density (i.e., 99.92% and 99.90% for 300 W and 400 W, respectively) and a more ductile behavior compared to the as-cast ones for every evaluated strain rate condition. The strain hardening capacity of the as-built samples increases with the laser power involved in the LMD process, reaching an average Yield Strength of 703 MPa for specimens realized at 400 W and tested at 800/s.  相似文献   

15.
Compared with straight steel–concrete composite beams, curved composite beams exhibit more complicated mechanical behaviors under combined bending and torsion coupling. There are much fewer experimental studies on curved composite beams than those of straight composite beams. This study aimed to investigate the combined bending and torsion behavior of curved composite beams. This paper presents static loading tests of the full elastoplastic process of three curved composite box beams with various central angles and shear connection degrees. The test results showed that the specimens exhibited notable bending and torsion coupling force characteristics under static loading. The curvature and interface shear connection degree significantly affected the force behavior of the curved composite box beams. The specimens with weak shear connection degrees showed obvious interfacial longitudinal slip and transverse slip. Constraint distortion and torsion behavior caused the strain of the inner side of the structure to be higher than the strain of the outer side. The strain of the steel beam webs was approximately linear. In addition, fine finite element models of three curved composite box beams were established. The correctness and applicability of the finite element models were verified by comparing the test results and numerical calculation results for the load–displacement curve, load–rotational angle curve, load–interface slip curve, and cross-sectional strain distribution. Finite element modeling can be used as a reliable numerical tool for the large-scale parameter analysis of the elastic–plastic mechanical behavior of curved composite box beams.  相似文献   

16.
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) with exceptional mechanical, thermal, chemical, and electrical properties are enticing reinforcements for fabricating lightweight, high-strength, and wear-resistant metal matrix composites with superior mechanical and tribological performance. Nickel–carbon nanotube composite (Ni-CNT) and nickel–graphene nanoplatelet composite (Ni-GNP) were fabricated via mechanical milling followed by the spark plasma sintering (SPS) technique. The Ni-CNT/GNP composites with varying reinforcement concentrations (0.5, 2, and 5 wt%) were ball milled for twelve hours to explore the effect of reinforcement concentration and its dispersion in the nickel microstructure. The effect of varying CNT/GNP concentration on the microhardness and the tribological behavior was investigated and compared with SPS processed monolithic nickel. Ball-on-disc tribological tests were performed to determine the effect of different structural morphologies of CNTs and GNPs on the wear performance and coefficient of friction of these composites. Experimental results indicate considerable grain refinement and improvement in the microhardness of these composites after the addition of CNTs/GNPs in the nickel matrix. In addition, the CNTs and GNPs were effective in forming a lubricant layer, enhancing the wear resistance and lowering the coefficient of friction during the sliding wear test, in contrast to the pure nickel counterpart. Pure nickel demonstrated the highest CoF of ~0.9, Ni-0.5CNT and Ni-0.5GNP exhibited a CoF of ~0.8, whereas the lowest CoF of ~0.2 was observed for Ni-2CNT and Ni-5GNP composites. It was also observed that the uncertainty of wear resistance and CoF in both the CNT/GNP-reinforced composites increased when loaded with higher reinforcement concentrations. The wear surface was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis to elucidate the wear mechanism in these composites.  相似文献   

17.
The dynamic behavior of a PPSRC beam–column joint is related to constraint effect, strength deterioration and strain rate effect. Then, it can be assessed by bearing capacity, stiffness degradation, displacement ductility and energy consumption. The results show that the increased strain rate causes growth in ring stiffness, bearing capacity and energy consumption of PPSRC beam–column joints. However, the influence of shear span-to-depth ratio on dynamic mechanical properties of PPSRC beam–column joints is more obvious than that of strain rate. Regardless of strain rate, the bearing capacity, initial stiffness, ring stiffness and energy consumption of PPSRC beam–column joints decrease as the shear span-to-depth ratio increases. Moreover, the ring stiffness under reverse direction is smaller than that the under forward direction at each displacement level. However, the stiffness degradation under a lower shear span-to-depth ratio is more obvious than that under a higher shear span-to-depth ratio. Moreover, the displacement ductility with a higher shear span-to-depth ratio is better than that with a lower shear span-to-depth ratio. Finally, the mechanical properties of PPSRC beam–column joints are affected by the extension length of partial steel plate, and the reasonable extension length of the partial steel plate in the column is affected by the shear span-to-depth ratio.  相似文献   

18.
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.  相似文献   

19.
Recycled concrete aggregate (RCA) is a typical construction and demolition (C&D) material generated in civil engineering activities and has been widely used as the coarse-grained filler added to sand for roadbed fillings. The effect of RCA content on the mechanical behavior of sand–RCA mixtures is complicated and still not fully understood. To explore the effect of RCA content on the macroscale and microscopic behavior of the sand–RCA mixtures with various RCA contents, laboratory direct shear tests and numerical simulations using the 3D discrete element method were performed. Experimental direct shear tests on sand–RCA mixtures with different contents of RCA were first carried out. Numerical direct shear models were then established to represent the experimental results. The particle shape effect was also considered using a new realistic shape modeling method to model the RCA particles. Good agreement was observed between the DEM simulation and experimental results, verifying the ability of the numerical direct shear models to represent the direct shear behavior of sand–RCA mixtures. The macroscopic responses of both experimental and numerical tests showed that all samples presented an initial hardening followed by a post-peak strain softening. The peak-state friction angles increased with the RCA content for samples under the same vertical stress. The effect of RCA content on the microscopic behavior based on DEM simulation was also found. The microscopic properties of RCA–sand mixtures, such as coordination numbers, PDFs and contact force transformation features, were analyzed and related to the macroscopic results.  相似文献   

20.
The interesting properties of Al 6061 aluminum foams have boosted the research on the correlation between foam composition and morphology and its mechanical response under dynamic conditions. In this study, ingots of an Al 6061-T4 foam were sectioned and analyzed in order to determine their microstructural and morphological characteristics, and then quasi-static and dynamic tests (10−3 to 3 × 102 s−1) were carried out to determine the material mechanical behavior. Dynamic tests, carried out by using the split Hopkinson bar, highlighted that the studied foam is characterized by a very good energy absorption capability, due to its ductile behavior. Nevertheless, the conducted research showed that cell morphology and distribution affect its mechanical behavior in dynamic conditions in which localized cell collapse may result in a decreased energy absorption and efficiency of the foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号