首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
A series of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing the hydrophilic oligo(para-phenylene ethynylene) with two 3,6,9-trioxadec-1-yloxy chains was designed and synthesized. The mononuclear alkynylplatinum(II) terpyridine complex was found to display a very strong tendency toward the formation of supramolecular structures. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would lead to the formation of nanotubes or helical ribbons. These desirable nanostructures were found to be governed by the steric bulk on the platinum(II) terpyridine moieties, which modulates the directional metal−metal interactions and controls the formation of nanotubes or helical ribbons. Detailed analysis of temperature-dependent UV-visible absorption spectra of the nanostructured tubular aggregates also provided insights into the assembly mechanism and showed the role of metal−metal interactions in the cooperative supramolecular polymerization of the amphiphilic platinum(II) complexes.Square-planar d8 platinum(II) polypyridine complexes have long been known to exhibit intriguing spectroscopic and luminescence properties (154) as well as interesting solid-state polymorphism associated with metal−metal and π−π stacking interactions (114, 25). Earlier work by our group showed the first example, to our knowledge, of an alkynylplatinum(II) terpyridine system [Pt(tpy)(C ≡ CR)]+ that incorporates σ-donating and solubilizing alkynyl ligands together with the formation of Pt···Pt interactions to exhibit notable color changes and luminescence enhancements on solvent composition change (25) and polyelectrolyte addition (26). This approach has provided access to the alkynylplatinum(II) terpyridine and other related cyclometalated platinum(II) complexes, with functionalities that can self-assemble into metallogels (2731), liquid crystals (32, 33), and other different molecular architectures, such as hairpin conformation (34), helices (3538), nanostructures (3945), and molecular tweezers (46, 47), as well as having a wide range of applications in molecular recognition (4852), biomolecular labeling (4852), and materials science (53, 54). Recently, metal-containing amphiphiles have also emerged as a building block for supramolecular architectures (4244, 5559). Their self-assembly has always been found to yield different molecular architectures with unprecedented complexity through the multiple noncovalent interactions on the introduction of external stimuli (4244, 5559).Helical architecture is one of the most exciting self-assembled morphologies because of the uniqueness for the functional and topological properties (6069). Helical ribbons composed of amphiphiles, such as diacetylenic lipids, glutamates, and peptide-based amphiphiles, are often precursors for the growth of tubular structures on an increase in the width or the merging of the edges of ribbons (64, 65). Recently, the optimization of nanotube formation vs. helical nanostructures has aroused considerable interests and can be achieved through a fine interplay of the influence on the amphiphilic property of molecules (66), choice of counteranions (67, 68), or pH values of the media (69), which would govern the self-assembly of molecules into desirable aggregates of helical ribbons or nanotube scaffolds. However, a precise control of supramolecular morphology between helical ribbons and nanotubes remains challenging, particularly for the polycyclic aromatics in the field of molecular assembly (6469). Oligo(para-phenylene ethynylene)s (OPEs) with solely π−π stacking interactions are well-recognized to self-assemble into supramolecular system of various nanostructures but rarely result in the formation of tubular scaffolds (7073). In view of the rich photophysical properties of square-planar d8 platinum(II) systems and their propensity toward formation of directional Pt···Pt interactions in distinctive morphologies (2731, 3945), it is anticipated that such directional and noncovalent metal−metal interactions might be capable of directing or dictating molecular ordering and alignment to give desirable nanostructures of helical ribbons or nanotubes in a precise and controllable manner.Herein, we report the design and synthesis of mono- and dinuclear alkynylplatinum(II) terpyridine complexes containing hydrophilic OPEs with two 3,6,9-trioxadec-1-yloxy chains. The mononuclear alkynylplatinum(II) terpyridine complex with amphiphilic property is found to show a strong tendency toward the formation of supramolecular structures on diffusion of diethyl ether in dichloromethane or dimethyl sulfoxide (DMSO) solution. Interestingly, additional end-capping with another platinum(II) terpyridine moiety of various steric bulk at the terminal alkyne would result in nanotubes or helical ribbons in the self-assembly process. To the best of our knowledge, this finding represents the first example of the utilization of the steric bulk of the moieties, which modulates the formation of directional metal−metal interactions to precisely control the formation of nanotubes or helical ribbons in the self-assembly process. Application of the nucleation–elongation model into this assembly process by UV-visible (UV-vis) absorption spectroscopic studies has elucidated the nature of the molecular self-assembly, and more importantly, it has revealed the role of metal−metal interactions in the formation of these two types of nanostructures.  相似文献   

3.
A series of discrete decanuclear gold(I) μ3-sulfido complexes with alkyl chains of various lengths on the aminodiphosphine ligands, [Au10{Ph2PN(CnH2n+1)PPh2}43-S)4](ClO4)2, has been synthesized and characterized. These complexes have been shown to form supramolecular nanoaggregate assemblies upon solvent modulation. The photoluminescence (PL) colors of the nanoaggregates can be switched from green to yellow to red by varying the solvent systems from which they are formed. The PL color variation was investigated and correlated with the nanostructured morphological transformation from the spherical shape to the cube as observed by transmission electron microscopy and scanning electron microscopy. Such variations in PL colors have not been observed in their analogous complexes with short alkyl chains, suggesting that the long alkyl chains would play a key role in governing the supramolecular nanoaggregate assembly and the emission properties of the decanuclear gold(I) sulfido complexes. The long hydrophobic alkyl chains are believed to induce the formation of supramolecular nanoaggregate assemblies with different morphologies and packing densities under different solvent systems, leading to a change in the extent of Au(I)–Au(I) interactions, rigidity, and emission properties.Gold(I) complexes are one of the fascinating classes of complexes that reveal photophysical properties that are highly sensitive to the nuclearity of the metal centers and the metal–metal distances (159). In a certain sense, they bear an analogy or resemblance to the interesting classes of metal nanoparticles (NPs) (6069) and quantum dots (QDs) (7076) in that the properties of the nanostructured materials also show a strong dependence on their sizes and shapes. Interestingly, while the optical and spectroscopic properties of metal NPs and QDs show a strong dependence on the interparticle distances, those of polynuclear gold(I) complexes are known to mainly depend on the nuclearity and the internuclear separations of gold(I) centers within the individual molecular complexes or clusters, with influence of the intermolecular interactions between discrete polynuclear molecular complexes relatively less explored (3438), and those of polynuclear gold(I) clusters not reported. Moreover, while studies on polynuclear gold(I) complexes or clusters are known (3454), less is explored of their hierarchical assembly and nanostructures as well as the influence of intercluster aggregation on the optical properties (3438). Among the gold(I) complexes, polynuclear gold(I) chalcogenido complexes represent an important and interesting class (4451). While directed supramolecular assembly of discrete Au12 (52), Au16 (53), Au18 (51), and Au36 (54) metallomacrocycles as well as trinuclear gold(I) columnar stacks (3438) have been reported, there have been no corresponding studies on the supramolecular hierarchical assembly of polynuclear gold(I) chalcogenido clusters.Based on our interests and experience in the study of gold(I) chalcogenido clusters (4446, 51), it is believed that nanoaggegrates with interesting luminescence properties and morphology could be prepared by the judicious design of the gold(I) chalcogenido clusters. As demonstrated by our previous studies on the aggregation behavior of square-planar platinum(II) complexes (7780) where an enhancement of the solubility of the metal complexes via introduction of solubilizing groups on the ligands and the fine control between solvophobicity and solvophilicity of the complexes would have a crucial influence on the factors governing supramolecular assembly and the formation of aggregates (80), introduction of long alkyl chains as solubilizing groups in the gold(I) sulfido clusters may serve as an effective way to enhance the solubility of the gold(I) clusters for the construction of supramolecular assemblies of novel luminescent nanoaggegrates.Herein, we report the preparation and tunable spectroscopic properties of a series of decanuclear gold(I) μ3-sulfido complexes with alkyl chains of different lengths on the aminophosphine ligands, [Au10{Ph2PN(CnH2n+1)PPh2}43-S)4](ClO4)2 [n = 8 (1), 12 (2), 14 (3), 18 (4)] and their supramolecular assembly to form nanoaggregates. The emission colors of the nanoaggregates of 2−4 can be switched from green to yellow to red by varying the solvent systems from which they are formed. These results have been compared with their short alkyl chain-containing counterparts, 1 and a related [Au10{Ph2PN(C3H7)PPh2}43-S)4](ClO4)2 (45). The present work demonstrates that polynuclear gold(I) chalcogenides, with the introduction of appropriate functional groups, can serve as building blocks for the construction of novel hierarchical nanostructured materials with environment-responsive properties, and it represents a rare example in which nanoaggregates have been assembled with the use of discrete molecular metal clusters as building blocks.  相似文献   

4.
DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.The ability to control, manipulate, and organize matter at the nanoscale has demonstrated immense potential for advancements in industrial technology, medicine, and materials (13). Bottom-up self-assembly has become a particularly promising area for nanofabrication (4, 5); however, to date designing complex motion at the nanoscale remains a challenge (69). Amino acid polymers exhibit well-defined and complex dynamics in natural systems and have been assembled into designed structures including nanotubes, sheets, and networks (1012), although the complexity of interactions that govern amino acid folding make designing complex geometries extremely challenging. DNA nanotechnology, on the other hand, has exploited well-understood assembly properties of DNA to create a variety of increasingly complex designed nanostructures (1315).Scaffolded DNA origami, the process of folding a long single-stranded DNA (ssDNA) strand into a custom structure (1618), has enabled the fabrication of nanoscale objects with unprecedented geometric complexity that have recently been implemented in applications such as containers for drug delivery (19, 20), nanopores for single-molecule sensing (2123), and templates for nanoparticles (24, 25) or proteins (2628). The majority of these and other applications of DNA origami have largely focused on static structures. Natural biomolecular machines, in contrast, have a rich diversity of functionalities that rely on complex but well-defined and reversible conformational changes. Currently, the scope of biomolecular nanotechnology is limited by an inability to achieve similar motion in designed nanosystems.DNA nanotechnology has enabled critical steps toward that goal starting with the work of Mao et al. (29), who developed a DNA nanostructure that took advantage of the B–Z transition of DNA to switch states. Since then, efforts to fabricate dynamic DNA systems have primarily focused on strand displacement approaches (30) mainly on systems comprising a few strands or arrays of strands undergoing ∼nm-scale motions (3137) in some cases guided by DNA origami templates (3840). More recently, strand displacement has been used to reconfigure DNA origami nanostructures, for example opening DNA containers (19, 41, 42), controlling molecular binding (43, 44), or reconfiguring structures (45). The largest triggerable structural change was achieved by Han et al. in a DNA origami Möbius strip (one-sided ribbon structure) that could be opened to approximately double in size (45). Constrained motion has been achieved in systems with rotational motion (19, 20, 32, 41, 44, 46, 47) in some cases to open lid-like components (19, 20, 41) or detect molecular binding (44, 48, 49). A few of these systems achieved reversible conformational changes (32, 41, 44, 46), although the motion path and flexibility were not studied. Constrained linear motion has remained largely unexplored. Linear displacements on the scale of a few nanometers have been demonstrated via conformational changes of DNA structure motifs (5055), strand invasion to open DNA hairpins (36, 55, 56), or the reversible sliding motion of a DNA tile actuator (56); these cases also did not investigate the motion path or flexibility of motion.Building on these prior studies, this work implements concepts from macroscopic machine design to build modular parts with constrained motion. We demonstrate an ability to tune the flexibility and range of motion and then integrate these parts into prototype mechanisms with designed 2D and 3D motion. We further demonstrate reversible actuation of a mechanism with complex conformational changes on minute timescales.  相似文献   

5.
Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.Schizophrenia (SCZ) is a disabling psychiatric disease associated with widespread neural disturbances. These involve abnormal neurodevelopment (13), neurochemistry (47), neuronal gene expression (811), and altered microscale neural architecture (2). Such deficits are hypothesized to impact excitation-inhibition (E/I) balance in cortical microcircuits (12). Clinically, SCZ patients display a wide range of symptoms, including delusions, hallucinations (13, 14), higher-level cognitive deficits (15, 16), and lower-level sensory alterations (17). This display is consistent with a widespread neuropathology (18), such as the E/I imbalance suggested by the NMDA receptor (NMDAR) hypofunction model (1921). However, emerging resting-state functional magnetic resonance imaging (rs-fMRI) studies implicate more network-specific abnormalities in SCZ. Typically, these alterations are localized to higher-order association regions, such as the fronto-parietal control network (FPCN) (18, 22) and the default mode network (DMN) (23, 24), with corresponding disturbances in thalamo-cortical circuits connecting to association regions (25, 26). It remains unknown how to reconcile widespread cellular-level neuropathology in SCZ (20, 21, 27, 28) with preferential association network disruptions (29, 30).Currently a tension exists between two competing frameworks: global versus localized neural dysfunction in SCZ. Association network alterations in SCZ, identified via neuroimaging, may arise from a localized dysfunction (3, 9, 31, 32). Alternatively, they may represent preferential abnormalities arising emergently from a nonspecific global microcircuit disruption (20, 33). Mechanistically, an emergent preferential effect could occur because of intrinsic differences between cortical areas in the healthy brain, leading to differential vulnerability toward a widespread homogenous neuropathology. For example, histological studies of healthy primate brains show interregional variation in cortical cytoarchitectonics (3438). Additional studies reveal differences in microscale organization and activity timescales for neuronal populations in higher-order association cortex compared with lower-order sensory regions (3840). However, these well-established neuroanatomical and neurophysiological hierarchies have yet to be systematically applied to inform network-level neuroimaging disturbances in SCZ. In this study, we examined the neuroimaging consequences of cortical hierarchy as defined by neurophysiological criteria (i.e., functional) rather than anatomical or structural criteria.One way to link cellular-level neuropathology hypotheses with neuroimaging is via biophysically based computational models (18, 41). Although these models have been applied to SCZ, none have integrated cortical hierarchy into their architecture. Here we initially implemented elevated E/I ratio within our well-validated computational model of resting-state neural activity (18, 42, 43) without assuming physiological differences between brain regions, but maintaining anatomical differences. The model predicted widespread elevated functional connectivity as a consequence of elevated E/I ratio. In turn, we tested this connectivity prediction across 161 SCZ patients and 164 matched healthy comparison subjects (HCS). However, we discovered an inhomogeneous spatial pattern of elevated connectivity in SCZ generally centered on association cortices.To capture the observed inhomogeneity, we hypothesized that pre-existing intrinsic regional differences between association and lower-order cortical regions may give rise to preferential network-level vulnerability to elevated E/I. Guided by primate studies examining activity timescale differences across the cortical hierarchy (39, 44), we incorporated physiological differentiation across cortical regions in the model. Specifically, we tested whether pre-existing stronger recurrent excitation in “association” networks (39, 40) would preferentially increase their functional connectivity in response to globally elevated E/I. Indeed, modeling simulations predicted preferential effects of E/I elevation in association networks, which could not be explained by structural connectivity differences alone.Finally, we empirically tested all model-derived predictions by examining network-specific disruptions in SCZ. To investigate diagnostic specificity of SCZ effects, we examined an independent sample of bipolar disorder (BD) patients (n = 73) that did not follow model-derived predictions. These results collectively support a parsimonious theoretical framework whereby emergent preferential association network disruptions in SCZ can arise from widespread and nonspecific E/I elevations at the microcircuit level. This computational psychiatry study (45) illustrates the productive interplay between biologically grounded modeling and clinical effects, which may inform refinement of neuroimaging markers and ultimately rational development of treatments for SCZ.  相似文献   

6.
7.
Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss.Animal nervous systems are complex cellular networks that encode internal states and behavioral output. They achieve this complexity primarily in two ways. First, nervous systems encode information in a wiring scheme whose connections differ in strength and sign (excitatory or inhibitory). The strengths can often change in an activity-dependent fashion (1). Second, nervous systems have a dynamic neural code made up of all-or-none action potentials and subtler graded potentials (2). The shape, timing, and duration of evoked electrical potentials vary greatly among—and even within—neurons and can also be activity-dependent. These two types of complex signaling, respectively, among and within cells are the fundamental work of nervous systems (1), and they are made possible by the great variety of ion channel proteins expressed in neurons.Recent studies have found that most ion channels and proteins involved in the formation of synapses are ancient, having originated long before the advent of nervous systems or even of animal multicellularity (37). However, the nature of the first animals and of the cells from which nervous systems evolved are not well understood, although many theories exist (811), and little is known about the genomic events that facilitated the rise of complex nervous systems. New information about animal phylogeny has demanded a return to these old questions concerning the nature of the first animals and the evolutionary history of nervous systems (1215).This new information concerns the placement of the ctenophores, or comb jellies. Recent studies place ctenophores as the sister group to all other metazoans, a surprising finding given that ctenophores are complex predators with fairly sophisticated nervous systems (15). In contrast, sponges, which traditionally were considered to be the sister group of the remaining animals (16), and placozoans do not have nervous systems (but see refs. 17 and 18). Recent genomic analyses have found that ctenophores are lacking many nervous system and muscle-associated genes, suggesting independent origins of these structures in ctenophores (15, 19, 20). Conversely, the genomic presence and expression of certain developmental genes involved in nervous system differentiation (13, 14) and genes expressed in the synapse (13, 21) indicate deep similarities between ctenophore nervous systems and others. These findings have revived the debate about whether animal nervous systems have one or more origins. Although it is clear that there has been some degree of homoplasy and/or secondary simplifications or losses, the nature and timing of these events remains debatable (refs. 14, 20, and 21 are excellent reviews on this subject).Many studies have addressed the origin of animal nervous systems by using comparative physiological, developmental, or morphological evidence (2224). We used a different technique: ancestral gene content reconstruction. This approach has been used to explore the origin of multicellularity (25), the evolution of prokaryotic metabolism (26), and the expansion of G-protein–coupled receptors in animals (27). Gene duplication has long been known to be a major source of novelty and complexity (28), and many of the families we analyzed play few known roles outside of nervous systems. We therefore hypothesized that the elaboration of nervous systems coincided with an expansion of the ion-channel families that are expressed there. We used two methods (27, 29) to reconstruct the ancestral copy number for a variety of ion channel families and tracked the evolution of gene duplications across the animal and fungal tree. The evolution of some of these families have been studied by other groups (15, 27, 3032), but here we combine current methods of ancestral genome content reconstruction with dense sampling of early branching species and gene families to search for patterns of gene duplication that might illuminate the early history of nervous systems.  相似文献   

8.
Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.Protein toxins from venomous organisms have been invaluable tools for studying the ion channel proteins they target. For example, in the case of voltage-activated potassium (Kv) channels, pore-blocking scorpion toxins were used to identify the pore-forming region of the channel (1, 2), and gating modifier tarantula toxins that bind to S1–S4 voltage-sensing domains have helped to identify structural motifs that move at the protein–lipid interface (35). In many instances, these toxin–channel interactions are highly specific, allowing them to be used in target validation and drug development (68).Tarantula toxins are a particularly interesting class of protein toxins that have been found to target all three families of voltage-activated cation channels (3, 912), stretch-activated cation channels (1315), as well as ligand-gated ion channels as diverse as acid-sensing ion channels (ASIC) (1621) and transient receptor potential (TRP) channels (22, 23). The tarantula toxins targeting these ion channels belong to the inhibitor cystine knot (ICK) family of venom toxins that are stabilized by three disulfide bonds at the core of the molecule (16, 17, 2431). Although conventional tarantula toxins vary in length from 30 to 40 aa and contain one ICK motif, the recently discovered double-knot toxin (DkTx) that specifically targets TRPV1 channels contains two separable lobes, each containing its own ICK motif (22, 23).One unifying feature of all tarantula toxins studied thus far is that they act on ion channels by modifying the gating properties of the channel. The best studied of these are the tarantula toxins targeting voltage-activated cation channels, where the toxins bind to the S3b–S4 voltage sensor paddle motif (5, 3236), a helix-turn-helix motif within S1–S4 voltage-sensing domains that moves in response to changes in membrane voltage (3741). Toxins binding to S3b–S4 motifs can influence voltage sensor activation, opening and closing of the pore, or the process of inactivation (4, 5, 36, 4246). The tarantula toxin PcTx1 can promote opening of ASIC channels at neutral pH (16, 18), and DkTx opens TRPV1 in the absence of other stimuli (22, 23), suggesting that these toxin stabilize open states of their target channels.For many of these tarantula toxins, the lipid membrane plays a key role in the mechanism of inhibition. Strong membrane partitioning has been demonstrated for a range of toxins targeting S1–S4 domains in voltage-activated channels (27, 44, 4750), and for GsMTx4 (14, 50), a tarantula toxin that inhibits opening of stretch-activated cation channels in astrocytes, as well as the cloned stretch-activated Piezo1 channel (13, 15). In experiments on stretch-activated channels, both the d- and l-enantiomers of GsMTx4 are active (14, 50), implying that the toxin may not bind directly to the channel. In addition, both forms of the toxin alter the conductance and lifetimes of gramicidin channels (14), suggesting that the toxin inhibits stretch-activated channels by perturbing the interface between the membrane and the channel. In the case of Kv channels, the S1–S4 domains are embedded in the lipid bilayer and interact intimately with lipids (48, 51, 52) and modification in the lipid composition can dramatically alter gating of the channel (48, 5356). In one study on the gating of the Kv2.1/Kv1.2 paddle chimera (53), the tarantula toxin VSTx1 was proposed to inhibit Kv channels by modifying the forces acting between the channel and the membrane. Although these studies implicate a key role for the membrane in the activity of Kv and stretch-activated channels, and for the action of tarantula toxins, the influence of the toxin on membrane structure and dynamics have not been directly examined. The goal of the present study was to localize a tarantula toxin in membranes using structural approaches and to investigate the influence of the toxin on the structure of the lipid bilayer.  相似文献   

9.
Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.Collective cell movement depends on intracellular biological mechanisms as well as environmental cues due to the extracellular matrix (15), mainly composed of collagen which is organized in hierarchical structures, such as fibrils and fibers. The mechanical properties of collagen fibril networks are essential to offer little resistance and high sensitivity to small deformations, allowing easy local remodeling and strong strain stiffening needed to ensure cell and tissue integrity (6). Wound healing is a typical biological assay to study collective migration of cells under controlled conditions in vitro and is a prototypical experimental method to study active matter (710). Experiments performed on soluble collagen (11) or other gels (12), micropatterned (13, 14) and deformable substrates (1) show that cell migration is guided by the substrate structure and stiffness (5, 15, 16).It has been argued that collective migration properties arise from stresses transmitted between neighboring cells (1) giving rise to long-ranged stress waves in the monolayer (17, 18). Hence the dynamics of an invading cell sheet is ruled by a combination of long-range internal stresses and interactions with the substrate, suggesting an analogy with driven elastic systems moving in a disordered medium such as cracks lines (19, 20), imbibition fronts (21), or ferromagnetic domain walls (22). The scaling laws in these systems are usually associated with a depinning critical point that has been widely studied by simple models for interface dynamics. Thanks to a combination of numerical simulations (23, 24) and renormalization group theory (23, 2527), we now have a detailed picture of the nonequilibrium phase transitions and universality classes in these systems. Here we substantiate the analogy between collective cell migration and depinning by revealing and characterizing widely distributed bursts of activity in the collective migration of different types of cells (human cancer cells and epithelial cells, mouse endothelial cells) over different substrates (plastic, soluble, and fibrillar collagen) and experimental conditions [vascular endothelial (VE)-cadherin knockdown] and compare the experiments with simulations of a computational model of active particles (10). We find that in all these cases the statistical properties of the bursts follow universal scaling laws that are quantitatively similar to those observed in driven disordered systems (28).  相似文献   

10.
Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane–nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.Three-dimensional micro/nanostructures are of growing interest (110), motivated by their increasingly widespread applications in biomedical devices (1113), energy storage systems (1419), photonics and optoelectronics (2024), microelectromechanical systems (MEMS) (2527), metamaterials (21, 2832), and electronics (3335). Of the many methods for fabricating such structures, few are compatible with the highest-performance classes of electronic materials, such as monocrystalline inorganic semiconductors, and only a subset of these can operate at high speeds, across length scales, from centimeters to nanometers. For example, although approaches (3639) that rely on self-actuating materials for programmable shape changes provide access to a wide range of 3D geometries, they apply only to certain types of materials [e.g., gels (36, 37), liquid crystal elastomers (39), and shape memory alloys (38)], generally not directly relevant to high-quality electronics, optoelectronics, or photonics. Techniques that exploit bending/folding of thin plates via the action of residual stresses or capillary effects are, by contrast, naturally compatible with these modern planar technologies, but they are currently most well developed only for certain classes of hollow polyhedral or cylindrical geometries (1, 10, 4044). Other approaches (45, 46) rely on compressive buckling in narrow ribbons (i.e., structures with lateral aspect ratios of >5:1) or filaments to yield complex 3D structures, but of primary utility in open-network mesh type layouts. Attempts to apply this type of scheme to sheets/membranes (i.e., structures with lateral aspect ratios of <5:1) lead to “kink-induced” stress concentrations that cause mechanical fracture. The concepts of Kirigami, an ancient aesthetic pursuit, involve strategically configured arrays of cuts to guide buckling/folding processes in a manner that reduces such stresses, to enable broad and interesting classes of 3D structures, primarily in paper at centimeter and millimeter dimensions. Traditional means for defining these cuts and for performing the folds do not extend into the micro/nanoscale regime, nor do they work effectively with advanced materials, particularly brittle semiconductors. This paper introduces ideas for a form of Kirigami that can be used in these contexts. Here, precisely controlled compressive forces transform 2D micro/nanomembranes with lithographically defined geometries and patterns of cuts into 3D structures across length scales from macro to micro and nano, with levels of complexity and control that significantly exceed those that can be achieved with alternative methods. This Kirigami approach is different from conventional macroscopic analogs [e.g., including lattice Kirigami methods (47, 48) that solve the inverse problem of folding a flat plate into a complex targeted 3D configuration], where negligible deformations occur in the uncut regions of the folded structures and from recently reported microscale Kirigami methods that use 2D forms for stretchable conductors (49). The current approach is also fully compatible with previously reported schemes based on residual stresses and on buckling of filamentary ribbons. Demonstrations include a diverse set of structures formed using silicon nanomembranes, plates, and ribbons and heterogeneous combinations of them with micro/nanopatterned metal films and dielectrics. A mechanically tunable optical transmission window illustrates the extent to which theoretical modeling can be used as a design tool to create targeted geometries that offer adaptable shapes and desired modes of operation.  相似文献   

11.
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution.Since Darwin, understanding the evolution of cognition has been widely regarded as one of the greatest challenges for evolutionary research (1). Although researchers have identified surprising cognitive flexibility in a range of species (240) and potentially derived features of human psychology (4161), we know much less about the major forces shaping cognitive evolution (6271). With the notable exception of Bitterman’s landmark studies conducted several decades ago (63, 7274), most research comparing cognition across species has been limited to small taxonomic samples (70, 75). With limited comparable experimental data on how cognition varies across species, previous research has largely relied on proxies for cognition (e.g., brain size) or metaanalyses when testing hypotheses about cognitive evolution (7692). The lack of cognitive data collected with similar methods across large samples of species precludes meaningful species comparisons that can reveal the major forces shaping cognitive evolution across species, including humans (48, 70, 89, 9398).To address these challenges we measured cognitive skills for self-control in 36 species of mammals and birds (Fig. 1 and Tables S1–S4) tested using the same experimental procedures, and evaluated the leading hypotheses for the neuroanatomical underpinnings and ecological drivers of variance in animal cognition. At the proximate level, both absolute (77, 99107) and relative brain size (108112) have been proposed as mechanisms supporting cognitive evolution. Evolutionary increases in brain size (both absolute and relative) and cortical reorganization are hallmarks of the human lineage and are believed to index commensurate changes in cognitive abilities (52, 105, 113115). Further, given the high metabolic costs of brain tissue (116121) and remarkable variance in brain size across species (108, 122), it is expected that the energetic costs of large brains are offset by the advantages of improved cognition. The cortical reorganization hypothesis suggests that selection for absolutely larger brains—and concomitant cortical reorganization—was the predominant mechanism supporting cognitive evolution (77, 91, 100106, 120). In contrast, the encephalization hypothesis argues that an increase in brain volume relative to body size was of primary importance (108, 110, 111, 123). Both of these hypotheses have received support through analyses aggregating data from published studies of primate cognition and reports of “intelligent” behavior in nature—both of which correlate with measures of brain size (76, 77, 84, 92, 110, 124).Open in a separate windowFig. 1.A phylogeny of the species included in this study. Branch lengths are proportional to time except where long branches have been truncated by parallel diagonal lines (split between mammals and birds ∼292 Mya).With respect to selective pressures, both social and dietary complexities have been proposed as ultimate causes of cognitive evolution. The social intelligence hypothesis proposes that increased social complexity (frequently indexed by social group size) was the major selective pressure in primate cognitive evolution (6, 44, 48, 50, 87, 115, 120, 125141). This hypothesis is supported by studies showing a positive correlation between a species’ typical group size and the neocortex ratio (80, 81, 8587, 129, 142145), cognitive differences between closely related species with different group sizes (130, 137, 146, 147), and evidence for cognitive convergence between highly social species (26, 31, 148150). The foraging hypothesis posits that dietary complexity, indexed by field reports of dietary breadth and reliance on fruit (a spatiotemporally distributed resource), was the primary driver of primate cognitive evolution (151154). This hypothesis is supported by studies linking diet quality and brain size in primates (79, 81, 86, 142, 155), and experimental studies documenting species differences in cognition that relate to feeding ecology (94, 156166).Although each of these hypotheses has received empirical support, a comparison of the relative contributions of the different proximate and ultimate explanations requires (i) a cognitive dataset covering a large number of species tested using comparable experimental procedures; (ii) cognitive tasks that allow valid measurement across a range of species with differing morphology, perception, and temperament; (iii) a representative sample within each species to obtain accurate estimates of species-typical cognition; (iv) phylogenetic comparative methods appropriate for testing evolutionary hypotheses; and (v) unprecedented collaboration to collect these data from populations of animals around the world (70).Here, we present, to our knowledge, the first large-scale collaborative dataset and comparative analysis of this kind, focusing on the evolution of self-control. We chose to measure self-control—the ability to inhibit a prepotent but ultimately counterproductive behavior—because it is a crucial and well-studied component of executive function and is involved in diverse decision-making processes (167169). For example, animals require self-control when avoiding feeding or mating in view of a higher-ranking individual, sharing food with kin, or searching for food in a new area rather than a previously rewarding foraging site. In humans, self-control has been linked to health, economic, social, and academic achievement, and is known to be heritable (170172). In song sparrows, a study using one of the tasks reported here found a correlation between self-control and song repertoire size, a predictor of fitness in this species (173). In primates, performance on a series of nonsocial self-control control tasks was related to variability in social systems (174), illustrating the potential link between these skills and socioecology. Thus, tasks that quantify self-control are ideal for comparison across taxa given its robust behavioral correlates, heritable basis, and potential impact on reproductive success.In this study we tested subjects on two previously implemented self-control tasks. In the A-not-B task (27 species, n = 344), subjects were first familiarized with finding food in one location (container A) for three consecutive trials. In the test trial, subjects initially saw the food hidden in the same location (container A), but then moved to a new location (container B) before they were allowed to search (Movie S1). In the cylinder task (32 species, n = 439), subjects were first familiarized with finding a piece of food hidden inside an opaque cylinder. In the following 10 test trials, a transparent cylinder was substituted for the opaque cylinder. To successfully retrieve the food, subjects needed to inhibit the impulse to reach for the food directly (bumping into the cylinder) in favor of the detour response they had used during the familiarization phase (Movie S2).Thus, the test trials in both tasks required subjects to inhibit a prepotent motor response (searching in the previously rewarded location or reaching directly for the visible food), but the nature of the correct response varied between tasks. Specifically, in the A-not-B task subjects were required to inhibit the response that was previously successful (searching in location A) whereas in the cylinder task subjects were required to perform the same response as in familiarization trials (detour response), but in the context of novel task demands (visible food directly in front of the subject).  相似文献   

12.
Fundamental relationships between the thermodynamics and kinetics of protein folding were investigated using chain models of natural proteins with diverse folding rates by extensive comparisons between the distribution of conformations in thermodynamic equilibrium and the distribution of conformations sampled along folding trajectories. Consistent with theory and single-molecule experiment, duration of the folding transition paths exhibits only a weak correlation with overall folding time. Conformational distributions of folding trajectories near the overall thermodynamic folding/unfolding barrier show significant deviations from preequilibrium. These deviations, the distribution of transition path times, and the variation of mean transition path time for different proteins can all be rationalized by a diffusive process that we modeled using simple Monte Carlo algorithms with an effective coordinate-independent diffusion coefficient. Conformations in the initial stages of transition paths tend to form more nonlocal contacts than typical conformations with the same number of native contacts. This statistical bias, which is indicative of preferred folding pathways, should be amenable to future single-molecule measurements. We found that the preexponential factor defined in the transition state theory of folding varies from protein to protein and that this variation can be rationalized by our Monte Carlo diffusion model. Thus, protein folding physics is different in certain fundamental respects from the physics envisioned by a simple transition-state picture. Nonetheless, transition state theory can be a useful approximate predictor of cooperative folding speed, because the height of the overall folding barrier is apparently a proxy for related rate-determining physical properties.Protein folding is an intriguing phenomenon at the interface of physics and biology. In the early days of folding kinetics studies, folding was formulated almost exclusively in terms of mass-action rate equations connecting the folded, unfolded, and possibly, one or a few intermediate states (1, 2). With the advent of site-directed mutagenesis, the concept of free energy barriers from transition state theory (TST) (3) was introduced to interpret mutational data (4), and subsequently, it was adopted for the Φ-value analysis (5). Since the 1990s, the availability of more detailed experimental data (6), in conjunction with computational development of coarse-grained chain models, has led to an energy landscape picture of folding (715). This perspective emphasizes the diversity of microscopic folding trajectories, and it conceptualizes folding as a diffusive process (1625) akin to the theory of Kramers (26).For two-state-like folding, the transition path (TP), i.e., the sequence of kinetic events that leads directly from the unfolded state to the folded state (27, 28), constitutes only a tiny fraction of a folding trajectory that spends most of the time diffusing, seemingly unproductively, in the vicinity of the free energy minimum of the unfolded state. The development of ultrafast laser spectroscopy (29, 30) and single-molecule (27, 28, 31) techniques have made it possible to establish upper bounds on the transition path time (tTP) ranging from <200 and <10 μs by earlier (27) and more recent (28), respectively, direct single-molecule FRET to <2 μs (30) by bulk relaxation measurements. Consistent with these observations, recent extensive atomic simulations have also provided estimated tTP values of the order of ∼1 μs (32, 33). These advances offer exciting prospects of characterizing the productive events along folding TPs.It is timely, therefore, to further the theoretical investigation of TP-related questions (19). To this end, we used coarse-grained Cα models (14) to perform extensive simulations of the folding trajectories of small proteins with 56- to 86-aa residues. These tractable models are useful, because despite significant progress, current atomic models cannot provide the same degree of sampling coverage for proteins of comparable sizes (32, 33). In addition to structural insights, this study provides previously unexplored vantage points to compare the diffusion and TST pictures of folding. Deviations of folding behaviors from TST predictions are not unexpected, because TST is mostly applicable to simple gas reactions; however, the nature and extent of the deviations have not been much explored. Our explicit-chain simulation data conform well to the diffusion picture but not as well to TST. In particular, the preexponential factors of the simulated folding rates exhibit a small but appreciable variation that depends on native topology. These findings and others reported below underscore the importance of single-molecule measurements (13, 27, 28, 31, 34, 35) in assessing the merits of proposed scenarios and organizing principles of folding (725, 36, 37).  相似文献   

13.
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras–GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras–GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras–GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12–induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras–GTP to stimulate Ras-induced senescence in nontransformed human cells.ASPP2, also known as 53BP2L, is a tumor suppressor whose expression is altered in human cancers (1). Importantly, targeting of the ASPP2 allele in two different mouse models reveals that ASPP2 heterozygous mice are prone to spontaneous and γ-irradiation–induced tumors, which rigorously demonstrates the role of ASPP2 as a tumor suppressor (2, 3). ASPP2 binds p53 via the C-terminal ankyrin-repeat and SH3 domain (46), is damage-inducible, and can enhance damage-induced apoptosis in part through a p53-mediated pathway (1, 2, 710). However, it remains unclear what biologic pathways and mechanisms mediate ASPP2 tumor suppressor function (1). Indeed, accumulating evidence demonstrates that ASPP2 also mediates nonapoptotic p53-independent pathways (1, 3, 1115).The induction of cellular senescence forms an important barrier to tumorigenesis in vivo (1621). It is well known that oncogenic Ras signaling induces senescence in normal nontransformed cells to prevent tumor initiation and maintain complex growth arrest pathways (16, 18, 2124). The level of oncogenic Ras activation influences its capacity to activate senescence; high levels of oncogenic H-RasV12 signaling leads to low grade tumors with senescence markers, which progress to invasive cancers upon senescence inactivation (25). Thus, tight control of Ras signaling is critical to ensure the proper biologic outcome in the correct cellular context (2628).The ASPP2 C terminus is important for promoting p53-dependent apoptosis (7). The ASPP2 N terminus may also suppress cell growth (1, 7, 2933). Alternative splicing can generate the ASPP2 N-terminal truncated protein BBP (also known as 53BP2S) that is less potent in suppressing cell growth (7, 34, 35). Although the ASPP2 C terminus mediates nuclear localization, full-length ASPP2 also localizes to the cytoplasm and plasma membrane to mediate extranuclear functions (7, 11, 12, 36). Structural studies of the ASPP2 N terminus reveal a β–Grasp ubiquitin-like fold as well as a potential Ras-binding (RB)/Ras-association (RA) domain (32). Moreover, ASPP2 can promote H-RasV12–induced senescence (13, 15). However, the molecular mechanism(s) of how ASPP2 directly promotes Ras signaling are complex and remain to be completely elucidated.Here, we explore the molecular mechanisms of how Ras-signaling is enhanced by ASPP2. We demonstrate that ASPP2: (i) binds Ras-GTP and stimulates Ras-induced ERK signaling via its N-terminal domain at the plasma membrane; (ii) enhances Ras-GTP loading and B-Raf/C-Raf dimerization and forms a ASPP2/Raf complex; (iii) stimulates Ras-induced C-Raf phosphorylation and activation; and (iv) potentiates H-RasV12–induced senescence in both primary human fibroblasts and neonatal human epidermal keratinocytes. These data provide mechanistic insight into ASPP2 function(s) and opens important avenues for investigation into its role as a tumor suppressor in human cancer.  相似文献   

14.
A problem in understanding eukaryotic DNA mismatch repair (MMR) mechanisms is linking insights into MMR mechanisms from genetics and cell-biology studies with those from biochemical studies of MMR proteins and reconstituted MMR reactions. This type of analysis has proven difficult because reconstitution approaches have been most successful for human MMR whereas analysis of MMR in vivo has been most advanced in the yeast Saccharomyces cerevisiae. Here, we describe the reconstitution of MMR reactions using purified S. cerevisiae proteins and mispair-containing DNA substrates. A mixture of MutS homolog 2 (Msh2)–MutS homolog 6, Exonuclease 1, replication protein A, replication factor C-Δ1N, proliferating cell nuclear antigen and DNA polymerase δ was found to repair substrates containing TG, CC, +1 (+T), +2 (+GC), and +4 (+ACGA) mispairs and either a 5′ or 3′ strand interruption with different efficiencies. The Msh2–MutS homolog 3 mispair recognition protein could substitute for the Msh2–Msh6 mispair recognition protein and showed a different specificity of repair of the different mispairs whereas addition of MutL homolog 1–postmeiotic segregation 1 had no affect on MMR. Repair was catalytic, with as many as 11 substrates repaired per molecule of Exo1. Repair of the substrates containing either a 5′ or 3′ strand interruption occurred by mispair binding-dependent 5′ excision and subsequent resynthesis with excision tracts of up to ∼2.9 kb occurring during the repair of the substrate with a 3′ strand interruption. The availability of this reconstituted MMR reaction now makes possible detailed biochemical studies of the wealth of mutations identified that affect S. cerevisiae MMR.DNA mismatch repair (MMR) is a critical DNA repair pathway that is coupled to DNA replication in eukaryotes where it corrects misincorporation errors made during DNA replication (19). This pathway prevents mutations and acts to prevent the development of cancer (10, 11). MMR also contributes to gene conversion by repairing mispaired bases that occur during the formation of recombination intermediates (3, 4, 12). Finally, MMR acts to suppress recombination between divergent but homologous DNA sequences, thereby preventing the formation of genome rearrangements that can result from nonallelic homologous recombination (4, 1315).Our knowledge of the mechanism of eukaryotic MMR comes from several general lines of investigation (39). Studies of bacterial MMR have provided a basic mechanistic framework for comparative studies (5). Genetic and cell-biology studies, primarily in Saccharomyces cerevisiae, have identified eukaryotic MMR genes, provided models for how their gene products define MMR pathways, and elucidated some of the details of how MMR pathways interact with replication (14). Reconstitution studies, primarily in human systems, have identified some of the catalytic features of eukaryotic MMR (79, 16, 17). Biochemical and structural studies of S. cerevisiae and human MMR proteins have provided information about the function of individual MMR proteins (69).In eukaryotic MMR, mispairs are bound by MutS homolog 2 (Msh2)–MutS homolog 6 (Msh6) and Msh2–MutS homolog 3 (Msh3), two partially redundant complexes of MutS-related proteins (3, 4, 18, 19). These complexes recruit a MutL-related complex, called MutL homoloh 1 (Mlh1)–postmeiotic segregation 1 (Pms1) in S. cerevisiae and Mlh1–postmeiotic segregation 2 (Pms2) in human and mouse (3, 4, 2023). The Mlh1–Pms1/Pms2 complex has an endonuclease activity suggested to play a role in the initiation of the excision step of MMR (24, 25). Downstream of mismatch recognition is a mispair excision step that can be catalyzed by Exonuclease 1 (Exo1) (2628); however, defects in both S. cerevisiae and mouse Exo1 result in only a partial MMR deficiency, suggesting the existence of additional excision mechanisms (26, 27, 29). DNA polymerase δ, the single-strand DNA binding protein replication protein A (RPA), the sliding clamp proliferating cell nuclear antigen (PCNA), and the clamp loader replication factor C (RFC) are also required for MMR at different steps, including activation of Mlh1–Pms1/Pms2, stimulation of Exo1, potentially in Exo1-independent mispair excision, and in the gap-filling resynthesis steps of MMR (3, 16, 17, 24, 27, 3036). Although much is known about these core MMR proteins, it is not well understood how eukaryotic MMR is coupled to DNA replication (1, 2), how excision is targeted to the newly replicated strand (1, 25, 3739), or how different MMR mechanisms such as Exo1-dependent and -independent subpathways are selected or how many such subpathways exist (1, 24, 27, 29).S. cerevisiae has provided a number of tools for studying MMR, including forward genetic screens for mutations affecting MMR, including dominant and separation-of-function mutations, the ability to evaluate structure-based mutations in vivo, cell biological tools for visualizing and analyzing MMR proteins in vivo, and overproduction of individual MMR proteins for biochemical analysis. However, linking these tools with biochemical systems that catalyze MMR reactions in vitro for mechanistic studies has not yet been possible. Here, we describe the development of MMR reactions reconstituted using purified proteins for the analysis of MMR mechanisms.  相似文献   

15.
Membrane recruitment of cytohesin family Arf guanine nucleotide exchange factors depends on interactions with phosphoinositides and active Arf GTPases that, in turn, relieve autoinhibition of the catalytic Sec7 domain through an unknown structural mechanism. Here, we show that Arf6-GTP relieves autoinhibition by binding to an allosteric site that includes the autoinhibitory elements in addition to the PH domain. The crystal structure of a cytohesin-3 construct encompassing the allosteric site in complex with the head group of phosphatidyl inositol 3,4,5-trisphosphate and N-terminally truncated Arf6-GTP reveals a large conformational rearrangement, whereby autoinhibition can be relieved by competitive sequestration of the autoinhibitory elements in grooves at the Arf6/PH domain interface. Disposition of the known membrane targeting determinants on a common surface is compatible with multivalent membrane docking and subsequent activation of Arf substrates, suggesting a plausible model through which membrane recruitment and allosteric activation could be structurally integrated.Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing exchange of GDP for GTP (1). Because many GEFs are recruited to membranes through interactions with phospholipids, active GTPases, or other membrane-associated proteins (15), GTPase activation can be restricted or amplified by spatial–temporal overlap of GEFs with binding partners. GEF activity can also be controlled by autoregulatory mechanisms, which may depend on membrane recruitment (611). Structural relationships between these mechanisms are poorly understood.Arf GTPases function in trafficking and cytoskeletal dynamics (5, 12, 13). Membrane partitioning of a myristoylated (myr) N-terminal amphipathic helix primes Arfs for activation by Sec7 domain GEFs (1417). Cytohesins comprise a metazoan Arf GEF family that includes the mammalian proteins cytohesin-1 (Cyth1), ARNO (Cyth2), and Grp1 (Cyth3). The Drosophila homolog steppke functions in insulin-like growth factor signaling, whereas Cyth1 and Grp1 have been implicated in insulin signaling and Glut4 trafficking, respectively (1820). Cytohesins share a modular architecture consisting of heptad repeats, a Sec7 domain with exchange activity for Arf1 and Arf6, a PH domain that binds phosphatidyl inositol (PI) polyphosphates, and a C-terminal helix (CtH) that overlaps with a polybasic region (PBR) (2128). The overlapping CtH and PBR will be referred to as the CtH/PBR. The phosphoinositide specificity of the PH domain is influenced by alternative splicing, which generates diglycine (2G) and triglycine (3G) variants differing by insertion of a glycine residue in the β1/β2 loop (29). Despite similar PI(4,5)P2 (PIP2) affinities, the 2G variant has 30-fold higher affinity for PI(3,4,5)P3 (PIP3) (30). In both cases, PIP3 is required for plasma membrane (PM) recruitment (23, 26, 3133), which is promoted by expression of constitutively active Arf6 or Arl4d and impaired by PH domain mutations that disrupt PIP3 or Arf6 binding, or by CtH/PBR mutations (8, 3436).Cytohesins are autoinhibited by the Sec7-PH linker and CtH/PBR, which obstruct substrate binding (8). Autoinhibition can be relieved by Arf6-GTP binding in the presence of the PIP3 head group (8). Active myr-Arf1 and myr-Arf6 also stimulate exchange activity on PIP2-containing liposomes (37). Whether this effect is due to relief of autoinhibition per se or enhanced membrane recruitment is not yet clear. Phosphoinositide recognition by PH domains, catalysis of nucleotide exchange by Sec7 domains, and autoinhibition in cytohesins are well characterized (8, 16, 17, 30, 3843). How Arf-GTP binding relieves autoinhibition and promotes membrane recruitment is unknown. Here, we determine the structural basis for relief of autoinhibition and investigate potential mechanistic relationships between allosteric regulation, phosphoinositide binding, and membrane targeting.  相似文献   

16.
17.
Rickettsiae are responsible for some of the most devastating human infections. A high infectivity and severe illness after inhalation make some rickettsiae bioterrorism threats. We report that deletion of the exchange protein directly activated by cAMP (Epac) gene, Epac1, in mice protects them from an ordinarily lethal dose of rickettsiae. Inhibition of Epac1 suppresses bacterial adhesion and invasion. Most importantly, pharmacological inhibition of Epac1 in vivo using an Epac-specific small-molecule inhibitor, ESI-09, completely recapitulates the Epac1 knockout phenotype. ESI-09 treatment dramatically decreases the morbidity and mortality associated with fatal spotted fever rickettsiosis. Our results demonstrate that Epac1-mediated signaling represents a mechanism for host–pathogen interactions and that Epac1 is a potential target for the prevention and treatment of fatal rickettsioses.Rickettsiae are responsible for some of the most devastating human infections (14). It has been forecasted that temperature increases attributable to global climate change will lead to more widespread distribution of rickettsioses (5). These tick-borne diseases are caused by obligately intracellular bacteria of the genus Rickettsia, including Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF) in the United States and Latin America (2, 3), and Rickettsia conorii, the causative agent of Mediterranean spotted fever endemic to southern Europe, North Africa, and India (6). A high infectivity and severe illness after inhalation make some rickettsiae (including Rickettsia prowazekii, R. rickettsii, Rickettsia typhi, and R. conorii) bioterrorism threats (7). Although the majority of rickettsial infections can be controlled by appropriate broad-spectrum antibiotic therapy if diagnosed early, up to 20% of misdiagnosed or untreated (1, 3) and 5% of treated RMSF cases (8) result in a fatal outcome caused by acute disseminated vascular endothelial infection and damage (9). Fatality rates as high as 32% have been reported in hospitalized patients diagnosed with Mediterranean spotted fever (10). In addition, strains of R. prowazekii resistant to tetracycline and chloramphenicol have been developed in laboratories (11). Disseminated endothelial infection and endothelial barrier disruption with increased microvascular permeability are the central features of SFG rickettsioses (1, 2, 9). The molecular mechanisms involved in rickettsial infection remain incompletely elucidated (9, 12). A comprehensive understanding of rickettsial pathogenesis and the development of novel mechanism-based treatment are urgently needed.Living organisms use intricate signaling networks for sensing and responding to changes in the external environment. cAMP, a ubiquitous second messenger, is an important molecular switch that translates environmental signals into regulatory effects in cells (13). As such, a number of microbial pathogens have evolved a set of diverse virulence-enhancing strategies that exploit the cAMP-signaling pathways of their hosts (14). The intracellular functions of cAMP are predominantly mediated by the classic cAMP receptor, protein kinase A (PKA), and the more recently discovered exchange protein directly activated by cAMP (Epac) (15). Thus, far, two isoforms, Epac1 and Epac2, have been identified in humans (16, 17). Epac proteins function by responding to increased intracellular cAMP levels and activating the Ras superfamily small GTPases Ras-proximate 1 and 2 (Rap1 and Rap2). Accumulating evidence demonstrates that the cAMP/Epac1 signaling axis plays key regulatory roles in controlling various cellular functions in endothelial cells in vitro, including cell adhesion (1821), exocytosis (22), tissue plasminogen activator expression (23), suppressor of cytokine signaling 3 (SOCS-3) induction (2427), microtubule dynamics (28, 29), cell–cell junctions, and permeability and barrier functions (3037). Considering the critical importance of endothelial cells in rickettsioses, we examined the functional roles of Epac1 in rickettsial pathogenesis in vivo, taking advantage of the recently generated Epac1 knockout mouse (38) and Epac-specific inhibitors (39, 40) generated from our laboratory. Our studies demonstrate that Epac1 plays a key role in rickettsial infection and represents a therapeutic target for fatal rickettsioses.  相似文献   

18.
19.
The mammalian inner ear separates sounds by their frequency content, and this separation underlies important properties of human hearing, including our ability to understand speech in noisy environments. Studies of genetic disorders of hearing have demonstrated a link between frequency selectivity and wave properties of the tectorial membrane (TM). To understand these wave properties better, we developed chemical manipulations that systematically and reversibly alter TM stiffness and viscosity. Using microfabricated shear probes, we show that (i) reducing pH reduces TM stiffness with little change in TM viscosity and (ii) adding PEG increases TM viscosity with little change in TM stiffness. By applying these manipulations in measurements of TM waves, we show that TM wave speed is determined primarily by stiffness at low frequencies and by viscosity at high frequencies. Both TM viscosity and stiffness affect the longitudinal spread of mechanical excitation through the TM over a broad range of frequencies. Increasing TM viscosity or decreasing stiffness reduces longitudinal spread of mechanical excitation, thereby coupling a smaller range of best frequencies and sharpening tuning. In contrast, increasing viscous loss or decreasing stiffness would tend to broaden tuning in resonance-based TM models. Thus, TM wave and resonance mechanisms are fundamentally different in the way they control frequency selectivity.The sharp frequency selectivity of auditory nerve fiber responses to sound is a hallmark of mammalian cochlear function. This remarkable signal processing originates in the mechanical stage of the cochlear signal processing chain (17), as evidenced by measured motions and mechanical properties of the basilar membrane (BM) (29) and tectorial membrane (TM) (1024). Although the hydromechanical mechanisms underlying BM motions have been characterized based on experimental and theoretical studies, the mechanisms underlying TM motions remain unclear.The TM is an acellular matrix that overlies the hair bundles of sensory receptor cells. Based on its strategic position above the organ of Corti, conventional cochlear models (2529) have implicated local mechanical properties (i.e., mass, stiffness) of the TM in stimulating the sensory hair bundles of hair cells and in cochlear tuning. Recent dynamic measurements of the TM, in vitro (17, 3033) and in vivo (34), suggest that the TM supports longitudinal coupling, with large spatial extents across a broad range of frequencies. This longitudinal coupling manifests in the form of propagating traveling waves that are thought to contribute to hearing mechanisms (17, 21, 30, 3540). Genetic modification studies provide further support that the spatial extent of TM waves may play a significant role in cochlear tuning (30, 32). Although these measurements, models, and genetic modification studies have confirmed the importance of TM mechanical properties in hearing, they have not isolated the distinct roles of TM stiffness and viscosity in generating longitudinally propagating traveling waves of the TM.To understand the contributions of TM material properties on traveling waves better, we developed chemical manipulations to alter the stiffness and viscosity of the TM selectively and reversibly. Because the TM is poroelastic (32, 41), we expect that changes in bath composition can have a direct effect on the mechanical properties of the TM mechanical matrix and its interstitial fluid, which makes up 97% of TM wet weight (42). The addition of PEG has previously been shown to generate an osmotic response that could be accounted for by the permeability of these molecules through the matrix rather than by direct changes to the matrix itself (41). In contrast, changing bath pH has little effect on the osmotic pressure or viscosity of the bath but has been shown to have a direct effect on the macromolecular matrix (43). In this paper, we apply these physicochemical manipulations to alter TM material properties reversibly, and thereby probe their role in controlling longitudinal spread of excitation through the TM.  相似文献   

20.
Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream swimming of mammalian sperm cells along solid surfaces, suggesting a robust physical mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself relative to an ambient flow is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments at different shear rates and viscosities. Using a 3D reconstruction algorithm to identify the flagellar beat patterns causing left or right turning, we present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this 3D analysis uncovers ambidextrous flagellar waveforms and shows that the cell’s turning direction is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror symmetry in the midpiece section, likely arising from a buckling instability. These results challenge current theoretical models of sperm locomotion.Taxis, the directed kinematic response to external signals, is a defining feature of living things that affects their reproduction, foraging, migration, and survival strategies (14). Higher organisms rely on sophisticated networks of finely tuned sensory mechanisms to move efficiently in the presence of chemical or physical stimuli. However, various fundamental forms of taxis are already manifest at the unicellular level, ranging from chemotaxis in bacteria (5) and phototaxis in unicellular green algae (2) to the mechanical response (durotaxis) of fibroblasts (6) and rheotaxis (7, 8) in spermatozoa (3, 912). Over the last few decades, much progress has been made in deciphering chemotactic, phototactic, and durotactic pathways in prokaryotic and eukaryotic model systems. In contrast, comparatively little is known about the physical mechanisms that enable flow gradient sensing in sperm cells (3, 913). Recent studies (3, 12) suggest that mammalian sperm use rheotaxis for long-distance navigation, but it remains unclear how shear flows alter flagellar beat patterns in the vicinity of surfaces and, in particular, how such changes in the beat dynamics affect the steering process. Answering these questions will be essential for evaluating the importance of chemical (14) and physical (4) signals during mammalian fertilization (1517).A necessary requirement for any form of directed kinematic response is the ability to change the direction of locomotion. Multiflagellate bacteria achieve this feat by varying their motor activity, resulting in alternating phases of entangled and disentangled flagellar dynamics that give rise to run-and-tumble motion (5). A similar mechanism was recently discovered in the biflagellate eukaryote Chlamydomonas reinhardtii (18). This unicellular green alga actively redirects its swimming motion through occasional desynchronization of its two cilia (19), although it is still debated whether this effect is of mechanical (20) or hydrodynamic (21, 22) origin. Experiments (23) show that the alga’s reorientation dynamics can lead to localization in shear flow (24, 25), with potentially profound implications in marine ecology. In contrast to taxis in multiflagellate organisms (2, 5, 18, 26, 27), the navigation strategies of uniflagellate cells are less well understood. For instance, it was discovered only recently that uniflagellate marine bacteria, such as Vibrio alginolyticus and Pseudoalteromonas haloplanktis, use a buckling instability in their lone flagellum to change their swimming direction (28). However, as passive prokaryotic flagella differ fundamentally from their active eukaryotic counterparts, it is unclear to what extent such insights translate to spermatozoa.Earlier studies of human sperm locomotion have identified several potential steering and transport mechanisms, including thermotaxis (4), uterine peristalsis (29, 30), and chemotaxis (14, 16, 31), but their relative importance has yet to be quantified. Recent experiments (3, 32, 33) demonstrate that rheotaxis, combined with steric surface alignment (12, 34), enables robust long-distance navigation by turning sperm cells preferentially against an externally imposed flow direction (9, 10), but how exactly this realignment process happens is unknown. It has been suggested (32, 35, 36) that the intrinsic curvature or chiral beat dynamics (37, 38) of the flagellum could play an essential role in rheotactic steering, but this remains to be confirmed in experiments. Similarly, an increasing number of theoretical models (36, 3947) still await empirical validation, because 3D data for the beat pattern of sperm swimming close to surfaces has been lacking.To examine the dynamics of human sperm rheotaxis quantitatively, we here combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction. Single-cell tracking reveals the existence of two kinematically distinct swimming states that result in opposite turning behaviors under flow reversal. We quantify this effect for a range of viscosities and shear rates, and use these comprehensive data to constrain an effective 2D model through a systematic large-scale scan ( > 6,000 parameter combinations). To identify the details of the flagellar beat dynamics during rheotaxis, we developed an algorithm that translates 2D intensity profiles into 3D positional data. Our 3D analysis confirms that human sperm perform a rolling motion (48), characterized by weakly nonplanar beat patterns and a rotating beat plane. However, contrary to current beliefs, we find that neither the rolling direction nor beat helicity determine the turning direction after flow reversal. Instead, the rheotactic turning behavior correlates with a previously unrecognized asymmetry in the midpiece, likely caused by a buckling instability. These findings call for a revision and extension of current models (36, 3944, 46).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号