首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Seasonal epidemics and periodic worldwide pandemics caused by influenza A viruses are of continuous concern. The viral nonstructural (NS1) protein is a multifunctional virulence factor that antagonizes several host innate immune defenses during infection. NS1 also directly stimulates class IA phosphoinositide 3-kinase (PI3K) signaling, an essential cell survival pathway commonly mutated in human cancers. Here, we present a 2.3-Å resolution crystal structure of the NS1 effector domain in complex with the inter-SH2 (coiled-coil) domain of p85β, a regulatory subunit of PI3K. Our data emphasize the remarkable isoform specificity of this interaction, and provide insights into the mechanism by which NS1 activates the PI3K (p85β:p110) holoenzyme. A model of the NS1:PI3K heterotrimeric complex reveals that NS1 uses the coiled-coil as a structural tether to sterically prevent normal inhibitory contacts between the N-terminal SH2 domain of p85β and the p110 catalytic subunit. Furthermore, in this model, NS1 makes extensive contacts with the C2/kinase domains of p110, and a small acidic α-helix of NS1 sits adjacent to the highly basic activation loop of the enzyme. During infection, a recombinant influenza A virus expressing NS1 with charge-disruption mutations in this acidic α-helix is unable to stimulate the production of phosphatidylinositol 3,4,5-trisphosphate or the phosphorylation of Akt. Despite this, the charge-disruption mutations in NS1 do not affect its ability to interact with the p85β inter-SH2 domain in vitro. Overall, these data suggest that both direct binding of NS1 to p85β (resulting in repositioning of the N-terminal SH2 domain) and possible NS1:p110 contacts contribute to PI3K activation.  相似文献   

2.
3.
The NS1 protein of influenza A virus (NS1A protein) is a multifunctional protein that counters cellular antiviral activities and is a virulence factor. Its N-terminal RNA-binding domain binds dsRNA. The only amino acid absolutely required for dsRNA binding is the R at position 38. To identify the role of this dsRNA-binding activity during influenza A virus infection, we generated a recombinant influenza A/Udorn/72 virus expressing an NS1A protein containing an RNA-binding domain in which R38 is mutated to A. This R38A mutant virus is highly attenuated, and the mutant NS1A protein, like the WT protein, is localized in the nucleus. Using the R38A mutant virus, we establish that dsRNA binding by the NS1A protein does not inhibit production of IFN-beta mRNA. Rather, we demonstrate that the primary role of this dsRNA-binding activity is to protect the virus against the antiviral state induced by IFN-beta. Pretreatment of A549 cells with IFN-beta for 6 h did not inhibit replication of WT Udorn virus, whereas replication of R38A mutant virus was inhibited 1,000-fold. Using both RNA interference in A549 cells and mouse knockout cells, we show that this enhanced sensitivity to IFN-beta-induced antiviral activity is due predominantly to the activation of RNase L. Because activation of RNase L is totally dependent on dsRNA activation of 2'-5' oligo (A) synthetase (OAS), it is likely that the primary role of dsRNA binding by the NS1A protein in virus-infected cells is to sequester dsRNA away from 2'-5' OAS.  相似文献   

4.
5.
On the basis of ex vivo studies using insulin-responsive cells, activation of a Class IA phosphoinositide 3-kinase (PI3K) seems to be required for a wide variety of cellular responses downstream of insulin. The Class IA PI3K enzymes are heterodimers of catalytic and regulatory subunits. In mammals, insulin-responsive tissues express both the p85alpha and p85beta isoforms of the regulatory subunit. Surprisingly, recent studies have revealed that disruption of the p85alpha gene in the mouse (p85alpha(-/-) mice) results in hypoglycemia with decreased plasma insulin, and the p85alpha(+/-) mice exhibit significantly increased insulin sensitivity. These results suggest either that p85alpha negatively regulates insulin signaling, or that p85beta, which mediates the major fraction of Class IA PI3K signaling in the absence of p85alpha, is more efficient than p85alpha in mediating insulin responses. To address this question, we have generated mice in which the p85beta gene is deleted (p85beta(-/-) mice). As with the p85alpha(-/-) mice, the p85beta(-/-) mice showed hypoinsulinemia, hypoglycemia, and improved insulin sensitivity. At the molecular level, PI3K activity associated with phosphotyrosine complexes was preserved despite a 20-30% reduction in the total protein level of the regulatory subunits. Moreover, insulin-induced activation of AKT was significantly up-regulated in muscle from the p85beta(-/-) mice. In addition, insulin-dependent tyrosine phosphorylation of insulin receptor substrate-2 was enhanced in the p85beta(-/-) mice, a phenotype not observed in the p85alpha(-/-) mice. These results indicate that in addition to their roles in recruiting the catalytic subunit of PI3K to the insulin receptor substrate proteins, both p85alpha and p85beta play negative roles in insulin signaling.  相似文献   

6.
7.
The p110 isoforms of phosphoinositide 3-kinase (PI3K) are acutely regulated by extracellular stimuli. The class IA PI3K catalytic subunits (p110alpha, p110beta, and p110delta) occur in complex with a Src homology 2 (SH2) domain-containing p85 regulatory subunit, which has been shown to link p110alpha and p110delta to Tyr kinase signaling pathways. The p84/p101 regulatory subunits of the p110gamma class IB PI3K lack SH2 domains and instead couple p110gamma to G protein-coupled receptors (GPCRs). Here, we show, using small-molecule inhibitors with selectivity for p110beta and cells derived from a p110beta-deficient mouse line, that p110beta is not a major effector of Tyr kinase signaling but couples to GPCRs. In macrophages, both p110beta and p110gamma contributed to Akt activation induced by the GPCR agonist complement 5a, but not by the Tyr kinase ligand colony-stimulating factor-1. In fibroblasts, which express p110beta but not p110gamma, p110beta mediated Akt activation by the GPCR ligands stromal cell-derived factor, sphingosine-1-phosphate, and lysophosphatidic acid but not by the Tyr kinase ligands PDGF, insulin, and insulin-like growth factor 1. Introduction of p110gamma in these cells reduced the contribution of p110beta to GPCR signaling. Taken together, these data show that p110beta and p110gamma can couple redundantly to the same GPCR agonists. p110beta, which shows a much broader tissue distribution than the leukocyte-restricted p110gamma, could thus provide a conduit for GPCR-linked PI3K signaling in the many cell types where p110gamma expression is low or absent.  相似文献   

8.
ISG15 is an IFN-α/β–induced, ubiquitin-like protein that is conjugated to a wide array of cellular proteins through the sequential action of three conjugation enzymes that are also induced by IFN-α/β. Recent studies showed that ISG15 and/or its conjugates play an important role in protecting cells from infection by several viruses, including influenza A virus. However, the mechanism by which ISG15 modification exerts antiviral activity has not been established. Here we extend the repertoire of ISG15 targets to a viral protein by demonstrating that the NS1 protein of influenza A virus (NS1A protein), an essential, multifunctional protein, is ISG15 modified in virus-infected cells. We demonstrate that the major ISG15 acceptor site in the NS1A protein in infected cells is a critical lysine residue (K41) in the N-terminal RNA-binding domain (RBD). ISG15 modification of K41 disrupts the association of the NS1A RBD domain with importin-α, the protein that mediates nuclear import of the NS1A protein, whereas the RBD retains its double-stranded RNA-binding activity. Most significantly, we show that ISG15 modification of K41 inhibits influenza A virus replication and thus contributes to the antiviral action of IFN-β. We also show that the NS1A protein directly and specifically binds to Herc5, the major E3 ligase for ISG15 conjugation in human cells. These results establish a “loss of function” mechanism for the antiviral activity of the IFN-induced ISG15 conjugation system, namely, that it inhibits viral replication by conjugating ISG15 to a specific viral protein, thereby inhibiting its function.  相似文献   

9.
10.
The NS1 protein of influenza A virus is a major virulence factor that is essential for pathogenesis. NS1 functions to impair innate and adaptive immunity by inhibiting host signal transduction and gene expression, but its mechanisms of action remain to be fully elucidated. We show here that NS1 forms an inhibitory complex with NXF1/TAP, p15/NXT, Rae1/mrnp41, and E1B-AP5, which are key constituents of the mRNA export machinery that interact with both mRNAs and nucleoporins to direct mRNAs through the nuclear pore complex. Increased levels of NXF1, p15, or Rae1 revert the mRNA export blockage induced by NS1. Furthermore, influenza virus down-regulates Nup98, a nucleoporin that is a docking site for mRNA export factors. Reduced expression of these mRNA export factors renders cells highly permissive to influenza virus replication, demonstrating that proper levels of key constituents of the mRNA export machinery protect against influenza virus replication. Because Nup98 and Rae1 are induced by interferons, down-regulation of this pathway is likely a viral strategy to promote viral replication. These findings demonstrate previously undescribed influenza-mediated viral-host interactions and provide insights into potential molecular therapies that may interfere with influenza infection.  相似文献   

11.
PIK3R2 encodes a ubiquitous regulatory subunit (p85β) of PI3K, an enzyme that generates 3-polyphosphoinositides at the plasma membrane. PI3K activation triggers cell survival and migration. We found that p85β expression is elevated in breast and colon carcinomas and that its increased expression correlates with PI3K pathway activation and tumor progression. p85β expression induced moderate PIP(3) generation at the cell membrane and enhanced cell invasion. In accordance, genetic alteration of pik3r2 expression levels modulated tumor progression in vivo. Increased p85β expression thus represents a cellular strategy in cancer progression.  相似文献   

12.
The PIK3CA gene encoding the p110alpha subunit of Class IA phosphatidylinositol 3-kinases (PI3Ks) is frequently mutated in human tumors. Mutations in the PIK3CB gene encoding p110beta, the only other widely expressed Class IA PI3K, have not been reported. We compared the biochemical activity and transforming potential of mutant forms of p110alpha and p110beta in a human mammary epithelial cell system. The two most common tumor-derived alleles of p110alpha, H1047R and E545K, potently activated PI3K signaling. Human mammary epithelial cells expressing these alleles grew efficiently in soft agar and as orthotopic tumors in nude mice. We also examined a third class of mutations in p110alpha, those in the p85-binding domain. A representative tumor-derived p85-binding-domain mutant R38H showed modestly reduced p85 binding and weakly activated PI3K/Akt signaling. In contrast, a deletion mutant lacking the entire p85-binding domain efficiently activated PI3K signaling. When we constructed in p110beta a mutation homologous to the E545K allele of p110alpha, the resulting p110beta mutant was only weakly activated and allowed minimal soft-agar growth. However, a gene fusion of p110beta with the membrane anchor from c-Src was highly active and transforming in both soft-agar and orthotopic nude mouse assays. Thus, although introduction of activating mutations from p110alpha at the corresponding sites in p110beta failed to render the enzyme oncogenic in human cells, the possibility remains that other mutations might activate the beta isoform.  相似文献   

13.
Activation of the phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B signaling pathway has been associated with multiple human cancers. Recently we showed that AKT is activated in both the thyroid and metastatic lesions of a mouse model of follicular thyroid carcinoma [thyroid hormone beta receptor (TRbeta)(PV/PV) mice]. This TRbeta(PV/PV) mouse harbors a knock-in mutant TRbeta gene (TRbetaPV mutant) that spontaneously develops thyroid cancer and distant metastasis similar to human follicular thyroid cancer. Here we show that in thyroid tumors, PV mutant bound significantly more to the PI3K-regulatory subunit p85alpha, resulting in a greater increase in the kinase activity than did TRbeta1 in wild-type mice. By GST pull-down assays, the ligand-binding domain of TR was identified as the interaction site with p85alpha. By confocal fluorescence microscopy, p85alpha was shown to colocalize with TRbeta1 or PV mainly in the nuclear compartment of cultured tumor cells from TRbeta(PV/PV) mice, but cytoplasmic p85alpha/PV or p85alpha/TRbeta1 complexes were also detectable. Further biochemical analysis revealed that the activation of the PI3K-AKT-mammalian target of the rapamycin-p70(S6K) pathway was observed in both the cytoplasmic and nuclear compartments, whereas the activation of the PI3K-integrin-linked kinase-matrix metalloproteinase 2 pathway was detected mainly in the extranuclear compartments. These results suggest that PV, via the activation of p85alpha, could act to affect PI3K downstream signaling in both the nuclear and extranuclear compartments, thereby contributing to thyroid carcinogenesis. Importantly, the present study unveils a mechanism by which a mutant TR acts to activate PI3K activity via protein-protein interactions.  相似文献   

14.
15.
Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers   总被引:6,自引:0,他引:6  
Class IA phosphoinositide 3-kinases (PI3Ks) signal downstream of tyrosine kinases and Ras and control a wide variety of biological responses. In mammals, these heterodimeric PI3Ks consist of a p110 catalytic subunit (p110alpha, p110beta, or p110delta) bound to any of five distinct regulatory subunits (p85alpha, p85beta, p55gamma, p55alpha, and p50alpha, collectively referred to as "p85s"). The relative expression levels of p85 and p110 have been invoked to explain key features of PI3K signaling. For example, free (i.e., non-p110-bound) p85alpha has been proposed to negatively regulate PI3K signaling by competition with p85/p110 for recruitment to phosphotyrosine docking sites. Using affinity and ion exchange chromatography and quantitative mass spectrometry, we demonstrate that the p85 and p110 subunits are present in equimolar amounts in mammalian cell lines and tissues. No evidence for free p85 or p110 subunits could be obtained. Cell lines contain 10,000-15,000 p85/p110 complexes per cell, with p110beta and p110delta being the most prevalent catalytic subunits in nonleukocytes and leukocytes, respectively. These results argue against a role of free p85 in PI3K signaling and provide insights into the nonredundant functions of the different class IA PI3K isoforms.  相似文献   

16.
BACKGROUND & AIMS: The effects of aging on pancreatic acinar cell proliferation have not been clearly defined. Phosphatidylinositol 3-kinase (PI3K)-mediated phosphorylation of Akt is a critical step for proliferation of various cell types and insulin secretion from pancreatic endocrine cells; however, its role in acinar cell proliferation is not known. The purpose of this study was to (1) delineate the effects of aging on pancreatic regeneration after partial pancreatectomy (Px) and (2) define the involvement of the PI3K/Akt pathway in pancreatic regeneration. METHODS: Following partial Px, pancreatic regeneration and activation of the PI3K pathway were compared in young and aged mice. Activation of the PI3K/Akt pathway was evaluated by Akt phosphorylation (pAkt). The role of the PI3K pathway in pancreatic regeneration after partial Px was assessed by effects of a pharmacologic PI3K inhibitor wortmannin or small interfering RNA (siRNA) to the p85alpha regulatory subunit. To confirm further the critical role of the PI3K/Akt pathway in pancreatic acinar cell proliferation, IGF-1-mediated cell proliferation was determined in cultured acinar cells pretreated with wortmannin or p85alpha siRNA. RESULTS: Pancreatic regeneration and pAkt expression after partial Px were significantly decreased with aging. Treatment with wortmannin or p85alpha siRNA reduced pancreatic regeneration after partial Px. The IGF-1-mediated cell proliferation in vitro was completely blocked by wortmannin or p85alpha siRNA but not by the MEK/ERK inhibitor PD98059. CONCLUSIONS: PI3K/Akt activation plays a critical role in the regeneration of pancreatic acini after resection. Furthermore, pancreatic regeneration is markedly attenuated in the aged pancreas most likely because of decreased PI3K/Akt activation.  相似文献   

17.
Nonstructural protein 1 (NS1) of influenza virus (IFV) is essential for evading interferon (IFN)-mediated antiviral responses, thereby contributing to the pathogenesis of influenza. Mitophagy is a type of autophagy that selectively removes damaged mitochondria. The role of NS1 in IFV-mediated mitophagy is currently unknown. Herein, we showed that overexpression of NS1 protein led to enhancement of mitophagy. Mitophagy induction via carbonyl cyanide 3-chlorophenylhydrazone treatment in IFV-infected A549 cells led to increased viral replication efficiency, whereas the knockdown of PTEN-induced kinase 1 (PINK1) led to the opposite effect on viral replication. Overexpression of NS1 protein led to changes in mitochondrial dynamics, including depolarization of mitochondrial membrane potential. In contrast, infection with NS1-deficient virus resulted in impaired mitochondrial fragmentation, subsequent mitolysosomal formation, and mitophagy induction, suggesting an important role of NS1 in mitophagy. Meanwhile, NS1 protein increased the phosphorylation of Unc-51-like autophagy activating kinase 1 (ULK1) and the mitochondrial expression of BCL2- interacting protein 3 (BNIP3), both of which were found to be important for IFV-mediated mitophagy. Overall, these data highlight the importance of IFV NS1, ULK1, and BNIP3 during mitophagy activation.  相似文献   

18.
Yu W  Cassara J  Weller PF 《Blood》2000,95(3):1078-1085
Phosphatidylinositide 3-kinase (PI3K) is a key enzyme implicated in intracellular signaling of diverse cellular responses including receptor-mediated responses and neutrophil activation. Several PI3K subunits have been cloned and shown to be localized to plasma membrane receptors, the cytosol, or intracellular vesicles or caveolae. We report the localization of PI3K to a distinct intracellular site, cytoplasmic lipid bodies, in leukocytes. In U937 monocyte cells, PI3K p85 regulatory and p110beta catalytic subunits were localized to lipid bodies by immunocytochemistry and/or immunoblotting and enzyme assays of subcellular fractions. In RAW murine macrophages, p55, p85alpha, and p85beta PI3K subunits were present at isolated lipid bodies. PI3K p85 was also shown to colocalize and, by co-immunoprecipitation, to be physically associated with phosphorylated Lyn kinase in lipid bodies induced to form in human polymorphonuclear leukocytes. These findings, therefore, indicate a novel site for PI3K compartmentalization and suggest that PI3K-mediated signaling is active within cytoplasmic lipid bodies in leukocytes.  相似文献   

19.
Insulin-like growth factor-1 (IGF-1) and beta-estradiol (E2) have vasodilatory effects, in part, through stimulation of vascular nitric oxide (NO) production. However, their interactive effects on endothelial nitric oxide synthase (eNOS) and NO production have not been previously studied in endothelial cells (EC). Employing rat aortic EC (RAEC), the effects of acute (20 and 30 minutes) and prolonged (4 hours) stimulation with 100 nmol/L IGF-1 and 1 nmol/L E2 (alone or in combination) were assessed with respect to protein levels and enzymatic activities for phosphatidyl inositol 3-kinase (PI3K) and serine/threonine kinase Akt (Akt), enzymes involved in eNOS activation. Exposure to IGF-1 for 30 minutes or E2 for 20 minutes increased insulin receptor substrate-1 (IRS-1) association with the regulatory (p85) subunit of PI3K, enhanced tyrosine phosphorylation of p85, and increased PI3K activity. Combined treatment had a greater effect on p85 phosphorylation and PI3K activity then either agonist alone. Moreover, IGF-1 and E2 enhanced Akt Ser(473) phosphorylation, with the effect of IGF-1 being much greater. Acute expose to both E2 (20 minutes) and IGF-1 (30 minutes) were associated with an increase in eNOS activity. Prolonged exposure (4 hours) to either IGF-1 or E2 increased expression of the p85 subunit as well as eNOS activity. Pretreatment with PI3K antagonist wortmannin (WT) prevented this increase in eNOS activity. The results suggest that IGF-1 and E2 may interact through PI3K/Akt-related pathways to increase eNOS activity.  相似文献   

20.
目的研究丙肝病毒(HCV)蛋白NS5A对PI3K/Akt信号的调节机制及其意义。方法 HepG2细胞分别转染NS5A质粒和对照载体。提取总蛋白,用Western blotting法分析PI3K信号Akt磷酸化水平,并用免疫沉淀法检测p85酪氨酸磷酸化水平及p85与p110蛋白间的相互作用。结果 NS5A转染细胞p-Akt蛋白水平上调,同时p85酪氨酸磷酸化水平显著提高,但催化亚基p110与调节亚基p85的结合作用没有明显变化。结论丙肝病毒(HCV)蛋白NS5A可以和PI3Kp85亚基结合而调节PI3K/Akt信号通路,但其机制可能有p85/p110以外的机制。这可能为临床丙肝IFN敏感性的诊断与治疗提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号