首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Components produced by additive technology are implemented in various spheres of industry, such as automotive or aerospace. This manufacturing process can lead to making highly optimized parts. There is not enough information about the quality of the parts produced by additive technologies, especially those made from metal powder. The research in this article deals with the porosity of components produced by additive technologies. The components used for the research were manufactured by the selective laser melting (SLM) method. The shape of these components is the same as the shape used for the tensile test. The investigated parts were printed with orientation in two directions, Z and XZ with respect to the machine platform. The printing strategy was “stripe”. The material used for printing of the parts was SS 316L-0407. The printing parameters were laser power of 200 W, scanning speed of 650 mm/s, and the thickness of the layer was 50 µm. A non-destructive method was used for the components’ porosity evaluation. The scanning was performed by CT machine METROTOM 1500. The radiation parameters used for getting 3D scans were voltage 180 kV, current 900 µA, detector resolution 1024 × 1024 px, voxel size 119.43 µm, number of projections 1050, and integration time 2000 ms. This entire measurement process responds to the computer aided quality (CAQ) technology. VG studio MAX 3.0 software was used to evaluate the obtained data. The porosity of the parts with Z and XZ orientation was also evaluated for parts’ thicknesses of 1, 2, and 3 mm, respectively. It has been proven by this experimental investigation that the printing direction of the part in the additive manufacturing process under question affects its porosity.  相似文献   

2.
The Special Issue of the Manufacturing Engineering Society 2020 (SIMES-2020) has been launched as a joint issue of the journals “Materials” and “Applied Sciences”. The 17 contributions published in this Special Issue of Materials present cutting-edge advances in the field of Manufacturing Engineering, focusing on additive manufacturing and 3D printing; advances and innovations in manufacturing processes; sustainable and green manufacturing; manufacturing of new materials; manufacturing systems: machines, equipment and tooling; robotics, mechatronics and manufacturing automation; metrology and quality in manufacturing; Industry 4.0; design, modeling and simulation in manufacturing engineering. Among them, this issue highlights that the topic “advances and innovations in manufacturing processes” has collected a large number of contributions, followed by additive manufacturing and 3D printing; sustainable and green manufacturing; metrology and quality in manufacturing.  相似文献   

3.
Flexible structures (FS) are thin shells with a pattern of holes. The stiffness of the structure in the normal direction is reduced by the shape of gaps rather than by the choice of the material based on mechanical properties such as Young’s modulus. This paper presents virtual prototyping of 3D printed flexible structures with selected planar patterns using laboratory testing and computer modeling. The objective of this work is to develop a non-linear computational model evaluating the structure’s stiffness and its experimental verification; in addition, we aimed to identify the best of the proposed patterns with respect to its stiffness: load-bearing capacity ratio. Following validation, the validated computational model is used for a parametric study of selected patterns. Nylon—Polyamide 12—was chosen for the purposes of this study as an appropriate flexible material suitable for 3D printing. At the end of the work, a computational model of the selected structure with modeling of load-bearing capacity is presented. The obtained results can be used in the design of external biomedical applications such as orthoses, prostheses, cranial remoulding helmets padding, or a new type of adaptive cushions. This paper is an extension of the conference paper: “Modeling and Testing of 3D Printed Flexible Structures with Three-pointed Star Pattern Used in Biomedical Applications” by authors Repa et al.  相似文献   

4.
In the concrete industry, various R&D efforts have been devoted to self-healing technology, which can maintain the long-term performance of concrete structures, which is important in terms of sustainable development. Cracks in cement composites occur and propagate because of various internal and external factors, reducing the composite’s stability. Interest in “self-healing” materials that can repair cracks has led researchers to embed self-healing capsules in cement composites. Overcoming the limitations of polymer capsules produced by chemical manufacturing methods, three-dimensional (3D) printing can produce capsules quickly and accurately and offers advantages such as high material strength, low cost, and the ability to fabricate capsules with complex geometries. We performed structural analysis simulations, experimentally evaluated the mechanical properties and solubility of poly(lactic acid) (PLA) capsules, and examined the effect of the capsule wall thickness and printing direction on cement composites embedded with these capsules. Thicker capsules withstood larger bursting loads, and the capsule rupture characteristics varied with the printing angle. Thus, the capsule design parameters must be optimized for different environments. Although the embedded capsules slightly reduced the compressive strength of the cement composites, the benefit of the encapsulated self-healing agent is expected to overcome this disadvantage.  相似文献   

5.
Studies in which birds are captured in mist nets, marked, and released can yield much more information than previously realized. When nets are erected, the capture rate is initially high and then decreases with time, as more and more of the resident bird individuals in the vicinity are captured and learn to avoid the nets a second time. The capture rate eventually reaches an asymptotic value depending on the number of “drifting,” nonresident individuals in the vicinity. We describe a simple theoretical formulation of this decline in capture rate, and we show how it can be used to estimate the sizes of the resident population and the drifting population separately. To illustrate the theory, we apply it to the results of a netting study in a Vermont forest. Variation among species in capture efficiency is correlated in part with preferred vertical foraging position. Species may be characterized as “smart” or “dumb” by the criterion of relative recapture frequency.  相似文献   

6.
This paper describes a method of predicting the direction of crack propagation implemented by user subroutines in the Simulia-Abaqus FEA system with the use of the extended finite element method (X-FEM). This method is based on displacements and stresses according to Westergaard’s solution of Griffith’s crack problem. During the calculations, in each crack increment, the algorithm reads the stresses and displacements in the model around the crack tip, calculates the criterion values at the read points, reduces them to a unit distance from the crack tip, fits a polynomial to these points, and finds the minimum of the function closest to the last propagation angle. The algorithm also decides when the crack grows, depending on a chosen criterion. Four criteria have been implemented to predict the direction of failure propagation: the maximum principal stress criterion, the Ottosen–Podgórski criterion, the new criterion described here based on the minimum component values of the displacement vector, and the maximum circumferential tensile stress (MTS). These criteria were verified in two tests: the three-point bending test of the notched beam and the anchor pull-out test. For these tests, the criterion built into Simulia Abaqus does not correctly define the crack path, which causes the crack propagation direction to “rotate” when simulating the fracture. The criteria developed here, in most cases, determine the crack path and the maximum force very well compared to real laboratory tests.  相似文献   

7.

Introduction:

Congenital heart disease makes up for 30% of all congenital anomalies. The prevalence is 8/1,000 live newborns, without predominance of gender. Imaging methods such as echocardiography, angiography, computed tomography or magnetic resonance imaging must be routinely used in congenital heart disease. The mentioned methods can provide virtual reconstructions in volumetric reconstruction or in three dimensional (3D), but only 3D-printed heart models can provide real 3D tactile replicas of cardiac anatomy.

Objective:

To make 3D printed heart models in order to provide real 3D tactile replicas of the cardiac anatomy that allow a detailed visualization from all possible perspectives, either of extracardiac or intracardiac structures.

Methods:

This information is useful for surgical decision making, especially in patients with complex cardiac defects. DICOM, edited in a software package “3D slicer 4.3” and exported for printing in file format (.stl).

Results and conclusions:

With 3D printing, the intracardiac and extracardiac anatomy can be evaluated in detail with real-scale cardiac models of the patient, avoiding unexpected findings. This technique is very useful especially in complex congenital heart defects, since it allows precise planning of the surgical procedure.Key words: Congenital heart disease, Cardiac imaging, Three dimensional printing, Surgical planning  相似文献   

8.

Objective:

This study aimed to evaluate the frequency of seasonal 25-hydroxyvitamin D [25(OH)D] deficiency and insufficiency in children and adolescents living in Bağcılar, district of İstanbul city.

Methods:

Serum vitamin D levels of 280 children aged 3-17 years old were measured at the end of winter and at the end of summer. Of the total group, vitamin D levels were re-measured in 198 subjects. Vitamin D deficiency was defined as a serum 25(OH)D level less than 15 ng/mL and insufficiency-as levels between 15 and 20 ng/mL. Patients whose vitamin D levels were less than 15 ng/mL at the end of winter were treated with 2000 units/day of vitamin D for 3 months.

Results:

In the “end of winter” samples, 25(OH)D deficiency was present in 80.36% of the subjects and insufficiency in 11.79%. In the “end of summer” samples, vitamin D deficiency was detected in 3.44% and insufficiency in 27.75%. Vitamin D levels in the “end of winter” samples were not significantly different between boys and girls, while “end of summer” levels were significantly lower in girls (p=0.015). Sunlight exposure was significantly higher in boys (p=0.011). The group with sufficient dairy product consumption had significantly higher vitamin D levels in both “end of summer” and “end of winter” samples. Limb pain was frequently reported in children with low vitamin D levels in the “end of winter” samples (p=0.001). Negative correlations were observed between vitamin D levels and season and also between vitamin D levels and age.

Conclusion:

It is essential to provide supplemental vitamin D to children and adolescents to overcome the deficiency seen especially at the end of winter.  相似文献   

9.
Computer-aided design and computer-aided manufacturing (CAD–CAM) enable subtractive or additive fabrication of temporary fixed dental prostheses (FDPs). The present in-vitro study aimed to compare the fracture resistance of both milled and additive manufactured three-unit FDPs and bar-shaped, ISO-conform specimens. Polymethylmethacrylate was used for subtractive manufacturing and a light-curing resin for additive manufacturing. Three (bars) and four (FDPs) different printing orientations were evaluated. All bars (n = 32) were subjected to a three-point bending test after 24 h of water storage. Half of the 80 FDPs were dynamically loaded (250,000 cycles, 98 N) with simultaneous hydrothermal cycling. Non-aged (n = 40) and surviving FDPs (n = 11) were subjected to static loading until fracture. Regarding the bar-shaped specimens, the milled group showed the highest flexural strength (114 ± 10 MPa, p = 0.001), followed by the vertically printed group (97 ± 10 MPa, p < 0.007). Subtractive manufactured FDPs revealed the highest fracture strength (1060 ± 89 N) with all specimens surviving dynamic loading. During artificial aging, 29 of 32 printed specimens failed. The present findings indicate that both printing orientation and aging affect the strength of additive manufactured specimens. The used resin and settings cannot be recommended for additive manufacturing of long-term temporary three-unit FDPs.  相似文献   

10.
Research and technological advancements in 3D concrete printing (3DCP) have led to the idea of applying it to offshore construction. The effect of gravity is reduced underwater, which can have a positive effect on 3DCP. For basic verification of this idea, this study printed and additively manufactured specimens with the same mortar mixture in air and underwater and evaluated properties in the fresh state and the hardened state. The mechanical properties were evaluated using the specimens produced by direct casting to the mold and specimens produced by extracting from the additive part through coring and cutting. The results of the experiment show that underwater 3D printing required a greater amount of printing output than in-air 3D printing for a good print quality, and buildability was improved underwater compared to that in air. In the case of the specimen layered underwater, the density and compressive strength decreased compared to the specimen layered in air. Because there are almost no effects of moisture evaporation and bleeding in water, the interlayer bond strength of the specimen printed underwater was somewhat larger than that printed in air, while there was no effect of the deposition time interval underwater.  相似文献   

11.
The influence of background ultrasonic field on the ultimate dynamic strength of adhesive joints is studied using fracture mechanics analysis. Winkler foundation-type models are applied to describe the cohesion zone, and the incubation time fracture criterion is used. The challenging task is to study whether relatively weak ultrasound is able to decrease the threshold values of the external impact load depending on a joint model, such as an “elastic membrane” or “beam” approximation, and various boundary conditions at the ends. The specific task was to investigate the case of short pulse loading through application of time-dependent fracture criterion instead of the conventional principle of critical stress. Three different load cases, namely, step constant force, dynamic pulse, and their combination with ultrasonic vibrations, were also studied. The analytical solution to the problem demonstrates that background vibrations at certain frequencies can significantly decrease threshold values of fracture impact load. Specific calculations indicate that even a weak background sonic field is enough to cause a significant reduction in the threshold amplitude of a dynamic short pulse load. Additionally, non-monotonic dependency of threshold amplitude on pulse duration for weak background field was observed, which demonstrates the existence of optimal regimes of impact energy input. Moreover, this phenomenon does not depend on the way in which the beam edges mount, whether they are clamped or hinged, and it could be applied for micro-electro-mechanical switch design processes as an additional tool to control operational regimes.  相似文献   

12.
13.
To determine whether postexercise criteria for peripheral artery disease (PAD) diagnosis recommended by the American Heart Association (AHA) identifies the same group of PAD patients.Diagnosis of PAD is performed using ankle-brachial index at rest (resting-ABI). When resting-ABI is not contributive, an AHA scientific statement recommend to use 1 of 2 following criteria: a postexercise ABI decrease of greater than 20% or a postexercise ankle pressure decrease of greater than 30 mm Hg.Between 1996 and 2012, 31,663 consecutive patients underwent lower-extremity arterial study at Mayo Clinic. Among them, only unique patients who had exercise treadmill testing were analyzed. In this retrospective analysis, resting-ABI, postexercise ABI, and postexercise decrease of ankle pressure measured at 1-minute were measured in each patient. We conducted an analysis of agreement between postexercise criteria expressing the agreement separately for the positive and the negative ratings. Twelve thousand three hundred twelve consecutive patients were studied with a mean age of 67 ± 12 years, 61% male. According to resting-ABI, 4317 (35%) patients had PAD. In the whole population, if a clinician diagnoses “PAD” with 1 postexercise criterion, the probability that other clinicians would also diagnose “PAD” is 74.3%. If a clinician diagnoses “no PAD”, the probability that other clinicians would also diagnose “no PAD” is 82.4%. In the patients to be of potential benefit from treadmill test when the resting-ABI > 0.90, if a clinician diagnoses “PAD” with 1 postexercise criterion, the probability that other clinicians would also diagnose “PAD” is 58.4% whereas if a clinician diagnoses “no PAD,” the probability that other clinicians would also diagnose “no PAD” is 87.5%.Postexercise criteria do not identify the same group of PAD patients. In our opinion, postexercise criteria to define PAD deserve additional study.  相似文献   

14.
Many genetic processes depend on proteins interacting with specific sequences on DNA. Despite the large excess of nonspecific DNA in the cell, proteins can locate their targets rapidly. After initial nonspecific binding, they are believed to find the target site by 1D diffusion (“sliding”) interspersed by 3D dissociation/reassociation, a process usually referred to as facilitated diffusion. The 3D events combine short intrasegmental “hops” along the DNA contour, intersegmental “jumps” between nearby DNA segments, and longer volume “excursions.” The impact of DNA conformation on the search pathway is, however, still unknown. Here, we show direct evidence that DNA coiling influences the specific association rate of EcoRV restriction enzymes. Using optical tweezers together with a fast buffer exchange system, we obtained association times of EcoRV on single DNA molecules as a function of DNA extension, separating intersegmental jumping from other search pathways. Depending on salt concentration, targeting rates almost double when the DNA conformation is changed from fully extended to a coiled configuration. Quantitative analysis by an extended facilitated diffusion model reveals that only a fraction of enzymes are ready to bind to DNA. Generalizing our results to the crowded environment of the cell we predict a major impact of intersegmental jumps on target localization speed on DNA.  相似文献   

15.
The term “critical raw materials” (CRMs) refers to various metals and nonmetals that are crucial to Europe’s economic progress. Modern technologies enabling effective use and recyclability of CRMs are in critical demand for the EU industries. The use of CRMs, especially in the fields of biomedicine, aerospace, electric vehicles, and energy applications, is almost irreplaceable. Additive manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field of manufacturing which underpins the Fourth Industrial Revolution. 3D printing not only suppresses waste but also provides an efficient buy-to-fly ratio and possesses the potential to entirely change supply and distribution chains, significantly reducing costs and revolutionizing all logistics. This review provides comprehensive new insights into CRM-containing materials processed by modern additive manufacturing techniques and outlines the potential for increasing the efficiency of CRMs utilization and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics of powder bed AM methods making them prime candidates for such developments.  相似文献   

16.
We aimed to explore the application of three-dimensional (3D) printing technology with problem-based learning (PBL) teaching model in clinical nursing education of congenital heart surgery, and to further improve the teaching quality of clinical nursing in congenital heart surgery. In this study, a total of 132 trainees of clinical nursing in congenital heart surgery from a grade-A tertiary hospital in 2019 were selected and randomly divided into 3D printing group or traditional group. The 3D printing group was taught with 3D printed heart models combined with PBL teaching technique, while the traditional group used conventional teaching aids combined with PBL technique for teaching. After the teaching process, the 2 groups of nursing students were assessed and surveyed separately to evaluate the results. Compared to the traditional group, the theoretical scores, clinical nursing thinking ability, self-evaluation for comprehensive ability, and teaching satisfaction from the questionnaires filled by the 3D printing group were all higher than the traditional group. The difference was found to be statistically significant (P < .05). Our study has shown the 3D printing technology combined with the PBL teaching technique in the clinical nursing teaching of congenital heart surgery achieved good results.  相似文献   

17.
Atopic dermatitis (AD) is often the initial step in the “atopic march,” given that more than half of AD patients with moderate to severe AD develop asthma later in life. Both AD and asthma share a similar “atopy” phenotype that includes T helper type 2 inflammation with eosinophilia and hyper-IgE immunoglobulinemia, but the molecular mechanisms underlying the “atopic march” remain elusive. In the present study, we show that induced expression of thymic stromal lymphopoietin (TSLP) in mouse epidermal keratinocytes upon topical application of MC903 (a low calcemic analogue of vitamin D3) not only triggers AD as we previously reported but also aggravates experimental allergic asthma induced by ovalbumin sensitization and challenge. Our study, which provides a mouse model to study human “atopic march,” indicates that keratinocyte-produced TSLP may represent an important factor in the link of atopic dermatitis to asthma.  相似文献   

18.
19.
Plastic waste reduction and recycling through circular use has been critical nowadays, since there is an increasing demand for the production of plastic components based on different polymeric matrices in various applications. The most commonly used recycling procedure, especially for thermoplastic materials, is based on thermomechanical process protocols that could significantly alter the polymers’ macromolecular structure and physicochemical properties. The study at hand focuses on recycling of polyamide 12 (PA12) filament, through extrusion melting over multiple recycling courses, giving insight for its effect on the mechanical and thermal properties of Fused Filament Fabrication (FFF) manufactured specimens throughout the recycling courses. Three-dimensional (3D) FFF printed specimens were produced from virgin as well as recycled PA12 filament, while they have been experimentally tested further for their tensile, flexural, impact and micro-hardness mechanical properties. A thorough thermal and morphological analysis was also performed on all the 3D printed samples. The results of this study demonstrate that PA12 can be successfully recycled for a certain number of courses and could be utilized in 3D printing, while exhibiting improved mechanical properties when compared to virgin material for a certain number of recycling repetitions. From this work, it can be deduced that PA12 can be a viable option for circular use and 3D printing, offering an overall positive impact on recycling, while realizing 3D printed components using recycled filaments with enhanced mechanical and thermal stability.  相似文献   

20.
AIM:To investigate the nature and origin of cardiac mucosa(CM).METHODS:Biopsy samples from sixty-one individuals were included in this study. The specimens were taken "at","just below",or "just above" the gastroesophageal junction,including the histologic squamocolumnar junction. Clinical data were obtained by reviewing electronic medical records for each patient. Patients with a history of stomach adenoma or carcinoma and esophageal carcinoma were excluded,and cases that were endoscopically suspicious of Barrett's esophagus or a polyp were also ruled out. Histologic and endoscopic reviews were performed blinded to the patient's clinical data. Histologic evaluation wasconducted by two pathologists,and endoscopic review was performed by a endoscopist with wide experience in the field. Histologically,the columnar epithelium of squamocolumnar junction,presence and severity of acute and chronic inflammation,atrophy,intestinal metaplasia,and presence of carditis were evaluated. Endoscopically,reflux esophagitis was evaluated by Los Angeles(LA) classification,hiatal hernias were classified by Hill grade,and gastroesophageal flap valves were assessed. RESULTS:Fifty-nine of the 61(96.7%) patients were Korean; 65.6%(40/61) of the patients underwent endoscopy according to the schedule of the National Health Insurance Program as a screening inspection. Of these,only 20.0%(8/40) of cases had reflux s y m p t o m s. C M w a s p r e s e n t i n 4 1 / 6 1( 6 7. 2 %) individuals,and its presence was associated with older age compared to oxyntocardiac mucosa/oxyntic mucosa(60.59 ± 2.02 years vs 51.55 ± 3.35 years; P = 0.018). The presence of CM was associated with endoscopic diagnosis of esophagitis according to the LA classification(P = 0.022). CM was associated with mononuclear cell infiltration and neutrophilic infiltration,which were statistically significant(P = 0.001,and P = 0.004,respectively). The inflammation of CM,"carditis",showed a statistically significant association with endoscopic diagnosis of reflux esophagitis according to the LA classification(P = 0.008). CONCLUSION:CM at the gastroesophageal junction is a common histologic finding in biopsy specimens,though not always present,and associated with gastroesophageal reflux disease and carditis severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号