首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Ultrasonic fatigue tests of TC4 titanium alloy equiaxed I, II and bimodal I, II obtained by different forging processes were carried out in the range from 105 to 109 cycles using 20 kHz three-point bending. The results showed that the S-N curves had different shapes, there was no traditional fatigue limit, and the bimodal I had the best comprehensive fatigue performance. The fracture morphology was analyzed by SEM, and it was found that the fatigue cracks originated from the surface or subsurface facets, showing a transgranular quasi-cleavage fracture mechanism. EDS analysis showed that the facets were formed by the cleavage of primary α grains, and the fatigue cracks originated from the primary α grain preferred textures, rather than the primary α grain clusters. From the microstructure perspective, the reasons for better equiaxed high-cycle-fatigue properties and better bimodal ultra-high-cycle-fatigue properties were analyzed. The bimodal I fatigue life prediction based on energy was also completed, and the prediction curve was basically consistent with the experimental data.  相似文献   

2.
An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.  相似文献   

3.
The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = −1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 109 cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.  相似文献   

4.
The fatigue micro crack initiation and propagation tests of a TiAl alloy with 8% Nb content were carried out by using scanning electron microscopy in situ technology at room temperature and at 750 °C. These results indicated that the fatigue micro crack initiation was mainly caused by the stress concentration at room temperature, but at an elevated temperature (750 °C) the multi-cracks were caused by the coupled factors of both lamellar microstructure and stress concentration. Therefore, fatigue micro crack initiation behavior is much more dependent on the lamellar structure at an elevated temperature. One of the reasons is that the elevated temperature degrades the interface strength between the lamellar of the TiAl alloy with 8% Nb content. Therefore, the small fatigue crack propagation behavior of the alloy exhibited a mixture damage model of interlamellar and translamellar at a micro scale. The crack growth path and fracture characteristics provided a proof of crack deflection, branching and/or bridging induced either by interlamellar or by translamellar failure mode.  相似文献   

5.
Nowadays, wrought zinc-based biodegradable alloys are favored by researchers, due to their excellent mechanical properties and suitable degradation rates. However, there are few research studies on their thermal deformation behavior at present. This study took Zn-1Fe-1Mg and explored its microstructural change, deformation, recrystallization behavior and processing map by means of the thermal simulation experiment, at temperatures ranging from 235 °C to 340 °C and strain rates ranging from 10−2 s−1 to 10 s−1. The constitutive model was constructed using the Arrhenius formula. The results indicated that the evolution of microstructure included the dynamic recrystallization (DRX) of the Zn matrix, the spheroidization of the Mg2Zn11 phase, and breaking of the FeZn13 phase. The subgrains observed within the deformed grain resulted mainly from continuous dynamic recrystallization (CDRX). The precipitated FeZn13 grains overlapped with the precipitated MgZn2 from the matrix, thus forming a spine-like structure at the phase interface. After compression, the alloy possessed a strong basal texture. Affected by the change of Zn twins, textural strength decreased at first and then increased as the deformation temperature rose. There was only a small unstable region in the processing map, indicating that the alloy exhibited good machinability.  相似文献   

6.
In the present work, the localized features of adiabatic shear bands (ASBs) of our recently designed damage tolerance α+β dual-phase Ti alloy are investigated by the integration of electron backscattering diffraction and experimental and theoretical Schmid factor analysis. At the strain rate of 1.8 × 104 s−1 induced by a split Hopkinson pressure bar, the shear stress reaches a maximum of 1951 MPa with the shear strain of 1.27. It is found that the α+β dual-phase colony structures mediate the extensive plastic deformations along α/β phase boundaries, contributing to the formations of ASBs, microvoids, and cracks, and resulting in stable and unstable softening behaviors. Moreover, the dynamic recrystallization yields the dispersion of a great amount of fine α grains along the shearing paths and in the ASBs, promoting the softening and shear localization. On the contrary, low-angle grain boundaries present good resistance to the formation of cracks and the thermal softening, while the non-basal slipping dramatically contributes to the strain hardening, supporting the promising approaches to fabricate the advanced damage tolerance dual-phase Ti alloy.  相似文献   

7.
A GPM-30 fatigue machine was used to investigate the influence of surface ultrasonic rolling (SURT) on the rolling contact fatigue (RCF) life of D2 wheel steel. The experimental results present that the RCF life of the grinding processing sample is 4.1 × 105 cycles. During the RCF process, the flaking of the fine grain layer and high surface roughness of the grinding processing sample cause the production of RCF cracks. When the samples are treated by SURT with 0.2 MPa and 0.4 MPa, the RCF life is 9.2 × 105 cycles and 9.6 × 105 cycles, respectively. After SURT, the surface roughness of the samples is reduced, and a certain thickness of gradient-plastic-deformation layer and a residual-compressive-stress layer are produced. These factors lead to the improvement of the RCF property. However, when the static pressure increases to 0.6 MPa during SURT, the RCF life of the sample is reduced during RCF testing. The micro-cracks, which are formed during SURT, become the crack source and cause the formation of RCF cracks, decreasing of the RCF life.  相似文献   

8.
The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains limited, especially for solid-state technologies such as linear friction welding (LFW). This paper presents the fatigue behavior of dissimilar titanium alloys, Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), joined by LFW with the aim of characterizing the stress versus number of cycles to failure (S-N) curves in both the low- and high-cycle fatigue regimes. Prior to fatigue testing, metallurgical characterization of the dissimilar alloy welds indicated softening in the heat-affected zone due to the retention of metastable β, and the typical practice of stress relief annealing (SRA) for alleviating the residual stresses was effective also in transforming the metastable β to equilibrated levels of α + β phases and recovering the hardness. Thus, the dissimilar alloy joints were fatigue-tested in the SRA (750 °C for 2 h) condition and their low- and high-cycle fatigue behaviors were compared to those of the Ti64 and Ti6242 base metals (BMs). The low-cycle fatigue (LCF) behavior of the dissimilar Ti6242–Ti64 linear friction welds was characterized by relatively high maximum stress values (~ 900 to 1100 MPa) and, in the high-cycle fatigue (HCF) regime, the fatigue limit of 450 MPa at 107 cycles was just slightly higher than that of the Ti6242 BM (434 MPa) and the Ti64 BM (445 MPa). Fatigue failure of the dissimilar titanium alloy welds in the low-cycle and high-cycle regimes occurred, respectively, on the Ti64 and Ti6242 sides, roughly 3 ± 1 mm away from the weld center, and the transitioning was reasoned based on the microstructural characteristics of the BMs.  相似文献   

9.
An experimental methodology was developed for estimating a very high cycle fatigue (VHCF) life of the aluminum alloy AMG-6 subjected to preliminary deformation. The analysis of fatigue damage staging is based on the measurement of elastic modulus decrement according to “in situ” data of nonlinear dynamics of free-end specimen vibrations at the VHCF test. The correlation of fatigue damage staging and fracture surface morphology was studied to establish the scaling properties and kinetic equations for damage localization, “fish-eye” nucleation, and transition to the Paris crack kinetics. These equations, based on empirical parameters related to the structure of the material, allows us to estimate the number of cycles for the nucleation and advance of fatigue crack.  相似文献   

10.
Longbiao Li 《Materials》2015,8(12):8539-8560
The damage evolution and life prediction of cross-ply C/SiC ceramic-matrix composite (CMC) under cyclic-fatigue loading at room temperature and 800 °C in air have been investigated using damage parameters derived from fatigue hysteresis loops, i.e., fatigue hysteresis modulus and fatigue hysteresis loss energy. The experimental fatigue hysteresis modulus and fatigue hysteresis loss energy degrade with increasing applied cycles attributed to transverse cracks in the 90° plies, matrix cracks and fiber/matrix interface debonding in the 0° plies, interface wear at room temperature, and interface and carbon fibers oxidation at 800 °C in air. The relationships between fatigue hysteresis loops, fatigue hysteresis modulus and fatigue hysteresis loss energy have been established. Comparing experimental fatigue hysteresis loss energy with theoretical computational values, the fiber/matrix interface shear stress corresponding to different cycle numbers has been estimated. It was found that the degradation rate at 800 °C in air is much faster than that at room temperature due to serious oxidation in the pyrolytic carbon (PyC) interphase and carbon fibers. Combining the fiber fracture model with the interface shear stress degradation model and the fibers strength degradation model, the fraction of broken fibers versus the cycle number can be determined for different fatigue peak stresses. The fatigue life S-N curves of cross-ply C/SiC composite at room temperature and 800 °C in air have been predicted.  相似文献   

11.
This paper presents the results of selective laser melting (SLM) process of a nitinol-based NiTiNb shape memory alloy. The eutectic alloy Ni45Ti45Nb10 with a shape memory effect was obtained by SLM in-situ alloying using a powder mixture of NiTi and Nb powder particles. Samples with a high relative density (>99%) were obtained using optimized process parameters. Microstructure, phase composition, tensile properties, as well as martensitic phase transformations temperatures of the produced alloy were investigated in as-fabricated and heat-treated conditions. The NiTiNb alloy fabricated using the SLM in-situ alloying featured the microstructure consisting of the NiTi matrix, fine NiTi+β-Nb eutectics, as well as residual unmelted Nb particles. The mechanical tests showed that the obtained alloy has a yield strength up to 436 MPa and the tensile strength up to 706 MPa. At the same time, in-situ alloying with Nb allowed increasing the hysteresis of martensitic transformation as compared to the alloy without Nb addition from 22 to 50 °C with an increase in Af temperature from −5 to 22 °C.  相似文献   

12.
The Fe-Mn-Si shape memory alloys are considered promising materials for the biodegradable bone implant application since their functional properties can be optimized to combine bioresorbability with biomechanical and biochemical compatibility with bone tissue. The present study focuses on the fatigue and corrosion fatigue behavior of the thermomechanically treated Fe-30Mn-5Si (wt %) alloy compared to the conventionally quenched alloy because this important functionality aspect has not been previously studied. Hot-rolled and water-cooled, cold-rolled and annealed, and conventionally quenched alloy samples were characterized by X-ray diffraction, transmission electron microscopy, tensile fatigue testing in air atmosphere, and bending corrosion fatigue testing in Hanks’ solution. It is shown that hot rolling at 800 °C results in the longest fatigue life of the alloy both in air and in Hanks’ solution. This advantage results from the formation of a dynamically recrystallized γ-phase grain structure with a well-developed dislocation substructure. Another important finding is the experimental verification of Young’s modulus anomalous temperature dependence for the studied alloy system, its minimum at a human body temperature, and corresponding improvement of the biomechanical compatibility. The idea was realized by lowering Ms temperature down to the body temperature after hot rolling at 800 °C.  相似文献   

13.
Oxidation of Al-Sn bearing alloy occurs during production, processing and use, which reduces both alloy performance and performance of coatings applied to the alloy surface. Therefore, the oxidation mechanism of Al-Sn bearing alloy is studied at 25, 180, 300, and 500 °C. The oxidation morphologies of the alloy were observed by scanning electron microscopy (SEM), and the oxidation products were determined by X-ray diffraction (XRD). The oxidation weight gain curves were obtained by thermogravimetric analysis. The experimental results show that: Al-Sn bearing alloy is oxidized quickly to form Al2O3. As the oxidation temperature increases, Sn phase start to precipitate along the grain boundary and form networked spheroids of Sn on the alloy surface. The amount of precipitation increases with further increase of the oxidation temperature. Cracks and holes are left in the alloy. The oxide layer is mainly composed of Sn, SnO2, and Al2O3. At 25 °C, oxidation rate of Al-Sn alloy approach zero. At 180, 300, and 500 °C, the oxidation rate increases quickly conforming to a power function, and eventually remains stable at about 3 × 10−6 mg·mm−2·s−1.  相似文献   

14.
Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nb (TA32) titanium alloy is a kind of near α high temperature titanium alloy with great application prospects in aero-engine afterburners and cruise missiles. However, there are still few studies on the microstructure and mechanical properties of TA32 specimens produced by selective laser melting (SLM) technology. In this study, TA32 specimens with high strength (tensile strength of 1267 MPa) and moderate ductility (elongation after fracture of 8%) were obtained by selective laser melting. The effect of laser power on the microstructure and mechanical behavior was studied and the results demonstrated that the average grain size increases with increasing laser power from 200 W to 400 W. Micro-zone composition analysis was carried out by energy dispersion spectrum (EDS), showing that the Al concentration inner grains is higher than that near grain boundaries. Fracture analysis results demonstrated that the fracture mode of SLM TA32 specimens was cleavage fracture. The tensile strength of the specimens built with a laser power of 250 W at 500 °C, 550 °C and 600 °C was measured as 869 MPa, 819 MPa and 712 MPa, respectively.  相似文献   

15.
Yoshimitsu Okazaki 《Materials》2012,5(8):1439-1461
Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.  相似文献   

16.
This paper presents the microstructural characteristics and mechanical properties of linear friction-welded (LFWed) Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) in as-welded (AWed) and stress relief-annealed (SRAed) conditions. The weld center (WC) of the AWed Ti-6242 consisted of recrystallized prior-β grains with α’ martensite that were tempered during SRA at 800 °C for 2 h and transformed into an acicular α + β microstructure. The peak hardness values, obtained in the AWed joints at the WC, sharply decreased through the thermomechanically affected zones (TMAZs) to the heat-affected zone (HAZ) of the Ti-6242 parent metal (PM). The SRA lowered the peak hardness values at the WC slightly and fully recovered the observed softening in the HAZ. The tensile mechanical properties of the welds in the AWed and SRAed conditions surpassed the minimum requirements in the AMS specifications for the Ti-6242 alloy. Fatigue tests, performed on the SRAed welds, indicated a fatigue limit of 468 MPa at 107 cycles, just slightly higher than that of the Ti-6242 PM (434 MPa). During tensile and fatigue testing, the welds failed in the PM region, which confirms the high mechanical integrity of the joints. Both the tensile and fatigue fracture surfaces exhibited characteristic features of ductile Ti-6242 PM.  相似文献   

17.
In this study, the effect of baking heat treatment on fatigue strength and fatigue life was evaluated by performing baking heat treatment after shot peening treatment on 4340M steel for landing gear. An ultrasonic fatigue test was performed to obtain the S–N curve, and the fatigue strength and fatigue life were compared. The micro hardness of shot peening showed a maximum at a hardened depth of about 50 μm and was almost uniform when it arrived at the hardened depth of about 400 μm. The overall average tensile strength after the baking heat treatment was lowered by about 80–111 MPa, but the yield strength was improved by about 206–262 MPa. The five cases of specimens showed similar fatigue strength and fatigue life in high cycle fatigue (HCF) regime. However, the fatigue limit of the baking heat treated specimens showed an increasing tendency rather than that of shot peening specimens when the fatigue life was extended to the very high cycle fatigue (VHCF) regime. The effect of baking heat treatment was identified from improved fatigue limit when baking heat was used to treat the specimen treated by shot peening containing inclusions. The optimum temperature range for the better baking heat treatment effect could be constrained not to exceed maximum 246 °C.  相似文献   

18.
Yoshimitsu Okazaki 《Materials》2012,5(12):2981-3005
The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.  相似文献   

19.
By means of the ultrasonic surface impact (amplitude of 30 μm, strike number of 48,000 times/mm2), nanograins have been achieved in the surfaces of both Ti6Al4V(TC4) and Ti3Zr2Sn3Mo25Nb(TLM) titanium alloys, mainly because of the dislocation motion. Many mechanical properties are improved, such as hardness, residual stress, and roughness. The rotating–bending fatigue limits of TC4 and TLM subjected to ultrasonic impact are improved by 13.1% and 23.7%, separately. Because of the bending fatigue behavior, which is sensitive to the surface condition, cracks usually initiate from the surface defects under high stress amplitude. By means of an ultrasonic impact tip with the size of 8 mm, most of the inner cracks present at the zone with a depth range of 100~250 μm in the high life region. The inner crack core to TC4 usually appears as a deformed long and narrow α-phase, while the cracks in TLM specimens prefer to initiate at the triple grain boundary junctions. This zone crosses the grain refined layer and the deformed coarse grain layer. With the gradient change of elastic parameters, the model shows an increase of normal stress at this zone. Combined with the loss of plasticity and toughness, it is easy to understand these fatigue behaviors.  相似文献   

20.
The aircraft electro-thermal anti-icing system that can guarantee flight safety may be affected by periodic heating and cyclic aerodynamic force during long-term flight missions, which seems to be a potential threat to ice protection. This paper aims to investigate the impacts of thermal and mechanical cycles on heating elements of the electro-thermal anti-icing system. Specimens were manufactured with CFRP (carbon fiber reinforced polymer) laminated composite, glass fiber prepreg and copper screen, in which sprayable metal film (SMF) was embedded as the heating element. The study focuses on electric resistance variation of SMF and functional fatigue life under the cycling load. Thermal cycling tests were carried out in an insulated chamber where the specimens were heated up to 80 °C and then cooled down to −55 °C for 1000 cycles. Mechanical cycling tests were conducted on a fatigue testing machine where the specimens were imposed on tension-compression loading for 106 cycles. Results showed that the electric resistance of SMF increased with the number of loading cycles. The resistance was increased by 20% and the heating power was decreased by 16.67% after 1000 thermal cycles. During the mechanical cycling tests, it was found that the heating element was destructed before the structural failure, which indicated that the fatigue life of function was lower than that of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号