首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Recent studies have elucidated the mechanism and regulation of hepatic transport of bile acids and organic anions. Bile acids are taken up into hepatocytes by basolateral transporters, Na+‐dependently by Na+/taurocholate cotransporting polypeptide (NTCP) and Na+‐independently by organic anion transporting polypeptide (OATP) families. Organic anions are taken up into hepatocytes by OATP families. These compounds are then transported in hepatocytes bound to cytosolic binders, and subjected to transport by ATP binding cassette (ABC) transporters at the canalicular membrane. Amidated bile acids are excreted into bile by bile salt export pump (BSEP), and organic anions and bile acid sulfates and glucuronides are excreted by multidrug resistance protein 2 (MRP2). Hepatic transporters are downregulated under cholestasis in rats and humans, except for MRP3, a basolateral ABC transporter, which is upregulated and may have a role in removing bile acids and organic anions from hepatocytes to the blood under cholestatic conditions. Nuclear receptors, which bind bile acids, have been shown to regulate the expression of hepatic transporters. Farnesoid X receptor (FXR), which downregulates CYP7A1, the rate‐limiting enzyme of bile acid biosynthesis, upregulates BSEP and downregulates NTCP. MRP2 is upregulated by both FXR and pregnane X receptor (PXR), which upregulates CYP3A.  相似文献   

2.
3.
4.
BACKGROUND/AIMS: Expression and localization of human hepatocellular transporters and of radixin, cross-linking actin with some membrane transporters, may change in cholestatic liver diseases. METHODS: We investigated the uptake transporters OATP2 (SLC21A6), OATP8 (SLC21A8), and NTCP (SLC10A1), the export pumps MRP2 (ABCC2), MRP3 (ABCC3), MRP6 (ABCC6), and P-glycoproteins (ABCB1, ABCB4, ABCB11), and radixin, in non-icteric primary biliary cirrhosis (PBC stages I-III) and control human liver needle-biopsies using immunofluorescence microscopy and semi-quantitative RT-PCR. RESULTS: Expression and localization of all transporters were unchanged in PBC I-II. Immunostaining intensities of uptake transporters decreased in PBC III with a concomitant decrease in mRNA levels. Immunostaining intensities and mRNA levels of export pumps were similar in controls and PBC I-III, however, irregular MRP2 immunostaining suggested redistribution of MRP2 into intracellular structures in PBC III. Areas of irregular MRP2 immunostaining showed largely reduced radixin immunostaining, whereas normal hepatocytes had MRP2 and radixin confined to the canalicular membrane. Disrupted localization of radixin and MRP2 supports the concept that radixin contributes to the canalicular localization of MRP2. CONCLUSIONS: Down-regulation of uptake transporters may contribute to the impaired hepatobiliary elimination in advanced PBC, and partially altered localization of MRP2 may reflect the onset of changes leading to icteric PBC.  相似文献   

5.
6.
The vectorial secretion of bile salts from blood into bile is a major driving force for bile formation. The basolateral hepatocyte membrane extracts bile salts from sinusoidal blood via Na(+)-dependent and Na(+)-independent membrane transporters. Na(+)-dependent uptake of bile salts is mediated by the Na(+)-taurocholate co-transporting polypeptide, a 51-kDa protein that is exclusively expressed in hepatocytes. Na(+)-independent uptake of bile salts is mediated by the organic anion transporting polypeptides, a superfamily of multispecific bile salt and amphipathic substrate transporters. Within the hepatocyte, bile salts are bound to cytosolic proteins and traverse the cell mainly by diffusion. Transport across the canalicular membrane is the rate-limiting step in overall hepatocellular bile salt excretion and is mediated by the bile salt export pump (BSEP), a homologue of the P-glycoproteins or multidrug resistance gene products. BSEP is a vulnerable target for inhibition by estrogen metabolites, drugs such as cyclosporine A, and abnormal bile salt metabolites, all of which can cause retention of bile salts and consequently intrahepatic cholestasis. Canalicular efflux of divalent sulfated or glucuronidated bile salts is mediated by the multidrug resistance protein 2 (MRP2), which is strongly decreased in cholestasis. Decreased MRP2 expression leads to compensatory increases in the basolateral expression of MRP1 and MRP3, which mediate the sinusoidal efflux of divalent bile salt conjugates and other organic anions. Thus, the hepatocyte can regulate expression levels of individual bile salt transporters during cholestasis to evade hepatotoxic injury.  相似文献   

7.
BACKGROUND & AIMS: The mechanisms by which mutations in the familial intrahepatic cholestasis-1 gene cause Byler's disease (progressive familial intrahepatic cholestasis type 1) are unknown. METHODS: Interactions among the apical sodium-dependent bile acid transporter, the farnesoid X receptor (FXR), and familial intrahepatic cholestasis-1 were studied in the ileum of children with progressive familial intrahepatic cholestasis type 1 and in Caco-2 cells. RESULTS: Increased ileal apical sodium-dependent bile acid transporter messenger RNA (mRNA) expression was detected in 3 patients with progressive familial intrahepatic cholestasis type 1. Paradoxically, ileal lipid-binding protein mRNA expression was repressed, suggesting a central defect in bile acid response. Ileal FXR and short heterodimer partner mRNA levels were reduced in the same 3 patients. In Caco-2 cells, antisense-mediated knock-down of endogenous familial intrahepatic cholestasis-1 led to up-regulation of apical sodium-dependent bile acid transporter and down-regulation of FXR, ileal lipid-binding protein, and short heterodimer partner mRNA. In familial intrahepatic cholestasis-1-negative Caco-2 cells, the activity of the human apical sodium-dependent bile acid transporter promoter was enhanced, whereas the human FXR and bile salt excretory pump promoters' activities were reduced. Overexpression of short heterodimer partner but not of the FXR abrogated the effect of familial intrahepatic cholestasis-1 antisense oligonucleotides. FXR cis-element binding and FXR protein were reduced primarily in nuclear but not cytoplasmic extracts from familial intrahepatic cholestasis-1-negative Caco-2 cells. CONCLUSIONS: Loss of familial intrahepatic cholestasis-1 leads to diminished nuclear translocation of the FXR, with the subsequent potential for pathologic alterations in intestinal and hepatic bile acid transporter expression. Marked hypercholanemia and cholestasis are predicted to develop, presumably because of both enhanced ileal uptake of bile salts via up-regulation of the apical sodium-dependent bile acid transporter and diminished canalicular secretion of bile salts secondary to down-regulation of the bile salt excretory pump.  相似文献   

8.
BACKGROUND & AIMS: Hepatic uptake of cholephilic organic compounds is mediated by members of the organic anion-transporting polypeptide (OATP) family. We aimed to characterize the novel OATP-B with respect to tissue distribution and hepatocellular localization and to compare its substrate specificity with those of OATP-A, OATP-C, and OATP8. METHODS: Tissue distribution and hepatocellular localization of OATP-B were analyzed by Northern blotting and immunofluorescence, respectively. Transport of 16 substrates was measured for each individual human OATP in complementary RNA-injected Xenopus laevis oocytes. RESULTS: Expression of OATP-B was most abundant in human liver, where it is localized at the basolateral membrane of hepatocytes. OATP-B, OATP-C, and OATP8 mediated high-affinity uptake of bromosulphophthalein (K(m), approximately 0.7, 0.3, and 0.4 micromol/L, respectively). OATP-B also transported estrone-3-sulfate but not bile salts. Although OATP-A, OATP-C, and OATP8 exhibit broad overlapping substrate specificities, OATP8 was unique in transporting digoxin and exhibited especially high transport activities for the anionic cyclic peptides [D-penicillamine(2,5)]enkephalin (DPDPE; opioid-receptor agonist) and BQ-123 (endothelin-receptor antagonist). CONCLUSIONS: OATP-B is the third bromosulphophthalein uptake system localized at the basolateral membrane of human hepatocytes. OATP-B, OATP-C, and OATP8 account for the major part of sodium-independent bile salt, organic anion, and drug clearance of human liver.  相似文献   

9.
10.
ATP-dependent transport of biliary constituents, such as bile acids, reduced glutathione, and bilirubin glucuronosides across the hepatocyte canalicular membrane into bile represents the decisive driving force for the formation of biliary fluid. Functional characterization, cloning, and localization of hepatocellular transporter proteins has provided a molecular understanding of the mechanisms underlying bile flow and intrahepatic cholestasis. Genetic variants in humans and genetic knockout in rodents, or transporter inhibition have indicated that both the conjugate export pump MRP2 (multidrug resistance protein 2; ABCC2) and the bile salt export pump BSEP (ABCB11) are major contributors to bile acid-independent and bile acid-dependent bile flow, respectively. In humans, genetic variants of BSEP, leading to an impaired transport activity or localization of the protein in the canalicular membrane, are associated with severe intrahepatic cholestasis. Efflux pumps of the basolateral hepatocyte membrane, particularly MRP3 (multidrug resistance protein 3; ABCC3) and MRP4 (multidrug resistance protein 4; ABCC4) pump substances from hepatocytes into sinusoidal blood. These efflux pumps have been recognized in recent years to play an important compensatory role in cholestasis and to contribute to the balance between uptake and efflux of substances during the vectorial transport from sinusoidal blood into bile. This sinusoidal efflux not only enables subsequent renal elimination, but also re-uptake of substances into neighboring and more centrally located hepatocytes in the sinusoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号